English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51731529      Online Users : 634
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大典藏 > College of Commerce > Department of MIS > Theses >  Item 140.119/138886
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/138886


    Title: 適應性學習模型應用於銅價預測
    An adaptive learning-based model for copper price forecasting
    Authors: 楊仁瀚
    Yang, Ren-Han
    Contributors: 林怡伶
    蔡瑞煌

    Lin, Yi-Ling
    Tsaih, Rua-Huan

    楊仁瀚
    Yang, Ren-Han
    Keywords: 自適應單隱藏層前饋神經網路
    概念飄移
    銅價預測
    移動窗口
    結構性變化
    Adaptive single-hidden layer feed-forward neural network
    Concept drift
    Copper price forecasting
    Moving window
    Structural change
    Date: 2022
    Issue Date: 2022-02-10 12:54:02 (UTC+8)
    Abstract: 銅在工業生產過程中扮演著不可或缺的工業原料之一,其價格變動的掌握對於相關的工業計劃與參與者來說至關重要。由於銅價的波動型態經常隨著時間推移而有所變化,往往會造成開發出的預測模型無法有效因應。為了因應銅價的變動特性,在本篇研究中除了檢驗出銅價具有結構性變化的特性並提出適應性學習型預測模型 (ALFM) 在動態變化的環境中學習。因爲結構性轉變在文獻中被證實與概念飄移在本質上存在著相近概念,所以本研究所提出之預測模型中除了加入移動窗口機制來因應銅價背後所存在的概念飄移與結構性轉變,並於自適應單隱藏層前饋神經網路 (ASLFN) 中設計序列型學習 (SS) 機制,以因應類神經網絡在學習具有複雜擬合函數資料時常面臨到梯度消失與擬合過度之問題。
    由於 SS 機制是本研究中首次提出,因此其有效性有必要被加以驗證,我們使用長江有色金屬網的銅現貨價進行實驗。實驗結果除了驗證 ALFM 中 SS 機制是有效的之外,即 SS 機制當中的模組安排皆為必要,同時 SS 機制也被證實可以有效解決自適應單隱藏層前饋神經網路所遭遇梯度消失與擬合過度之問題。在所提出的預測模型中移動窗口機制與 SS 機制皆有助於提高預測能力,這使得所提出的 ALFM 比文獻中的其他工具有更好的預測結果,而且訓練時間是可以被接受的。最後,在與文獻中所使用的工具(如:SARIMA、SLFN、SVR、RNN、LSTM 以及 GRU)相比後,可以發現 ALFM 具有更好的預測結果。
    An accurate forecasting model for the price volatility of copper plays a vital role in decision-making for industrial projects and related companies. The challenge to deploy models is the change of the data over time, which commonly leads to significant mispredictions. In this paper, the structural change in copper prices has been examined. The adaptive learning-based forecasting model (ALFM) is proposed to learn the patterns under a dynamic changing environment, which combines the moving window mechanism and sequentially structuring (SS) mechanism. The moving window mechanism is used to address the concept drift and structural change behind the copper price. The sequentially structuring (SS) mechanism is designed for the adaptive single hidden layer feed-forward neural network (ASLFN) in response to solving the vanishing gradient and overfitting problems.
    The SS mechanism is first proposed in this study and thus should be validated. We use the copper spot prices of Yangtze River (YR) nonferrous metals as application data. The experiment results provide evidence for examining the arrangement of SS mechanism does work in the training process. The proposed ideas of these modules within the SS mechanism can cope with the vanishing gradient or alleviate the overfitting tendency. Furthermore, both the moving window mechanism and SS mechanism in the proposed forecasting model help to improve the prediction ability, which makes the ALFM have better prediction results than other tools in the literature, and the training time is acceptable. The baseline models are seasonal ARIMA model (SARIMA), single-hidden layer feedforward neural network (SLFN), support vector regression (SVR), recurrent neural network (RNN), long short-term memory (LSTM), and gated recurrent unit (GRU).
    Reference: Abbasimehr, H., Shabani, M., & Yousefi, M. (2020). An optimized model using LSTM network for demand forecasting. Computers and Industrial Engineering, 143, 106435.
    Alameer, Z., Elaziz, M. A., Ewees, A. A., Ye, H., & Jianhua, Z. (2019). Forecasting copper prices using hybrid adaptive neuro-fuzzy inference system and genetic algorithms. Natural Resources Research, 28(4), 1385–1401.
    Alippi, C., Liu, D., Zhao, D., & Bu, L. (2014). Detecting and reacting to changes in sensing units: The active classifier case. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 44(3), 353–362.
    Andreou, E., & Ghysels, E. (2009). Structural breaks in financial time series. Handbook of Financial Time Series, 839–870.
    Andrews, D. W. (1993). Tests for parameter instability and structural change with unknown change point. Econometrica: Journal of the Econometric Society, 61, 821–856.
    Andrews, D. W. K., Lee, I., & Ploberger, W. (1996). Optimal changepoint tests for normal linear regression. Journal of Econometrics, 70(1), 9–38.
    Andrews, D. W., & Ploberger, W. (1994). Optimal tests when a nuisance parameter is present only under the alternative. Econometrica: Journal of the Econometric Society, 1383–1414.
    Angus, A., Casado, M. R., & Fitzsimons, D. (2012). Exploring the usefulness of a simple linear regression model for understanding price movements of selected recycled materials in the UK. Resources, Conservation and Recycling, 60, 10–19.
    Astudillo, G., Carrasco, R., Fernández-Campusano, C., & Chacón, M. (2020). Copper price prediction using support vector regression technique. Applied Sciences, 10(19), 1–10.
    Babcock, B., Datar, M., & Motwani, R. (2001). Sampling from a moving window over streaming data. In 2002 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2002).
    Bai, J., & Perron, P. (1998). Estimating and testing linear models with multiple structural changes. Econometrica, 66(1), 47.
    Bai, J., & Perron, P. (2003). Computation and analysis of multiple structural change models. Journal of Applied Econometrics, 18(1), 1–22.
    Baier, L., Hofmann, M., Kühl, N., Mohr, M., & Satzger, G. (2020). Handling concept drifts in regression problems-the error intersection approach. ArXiv Preprint ArXiv:2004.00438.
    Bao, Y., Lu, Y., & Zhang, J. (2004). Forecasting stock price by SVMs regression. International Conference on Artificial Intelligence: Methodology, Systems, and Applications, 295–303.
    Behmiri, B., N., Manera, M., Behmiri, N. B., & Manera, M. (2015). The role of outliers and oil price shocks on volatility of metal prices. Resources Policy, 46, 139–150.
    Bifet, A., & Gavaldà, R. (2007). Learning from time-changing data with adaptive windowing. Proceedings of the 2007 SIAM International Conference on Data Mining, 443–448.
    Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327.
    Buncic, D., & Moretto, C. (2015). Forecasting copper prices with dynamic averaging and selection models. The North American Journal of Economics and Finance, 33, 1–38.
    Cao, L. J., & Tay, F. E. H. (2003). Support vector machine with adaptive parameters in financial time series forecasting. IEEE Transactions on Neural Networks, 14(6), 1506–1518.
    Carrasco, R., Fernández-Campusano, C., Soto, I., Lagos, C., Krommenacker, N., Banguera, L., & Durán, C. (2019). Copper price variation forecasts using genetic algorithms. International Conference on Applied Technologies, 284–296.
    Carrasco, R. R., Astudillo, G., Soto, I., Chacon, M. M. M., & Fuentealba, D. (2018). Forecast of copper price series using vector support machines. 2018 7th International Conference on Industrial Technology and Management (ICITM), 380–384.
    Chan, K. S., & Tong, H. (1986). On estimating thresholds in autoregressive models. Journal of Time Series Analysis, 7(3), 179–190.
    Chang, J. H., & Lee, W. S. (2005). estWin: Online data stream mining of recent frequent itemsets by sliding window method. Journal of Information Science, 31(2), 76–90.
    Chavas, J. P. (2001). Structural change in agricultural production: Economics, technology and policy. Handbook of Agricultural Economics, 1, 263–285.
    Chen, Y. C., Rogoff, K. S., & Rossi, B. (2010). Can exchange rates forecast commodity prices? The Quarterly Journal of Economics, 125(3), 1145–1194.
    Chen, Y. Q., Thomas, D. W., & Nixon, M. S. (1994). Generating-shrinking algorithm for learning arbitrary classification. Neural Networks, 7(9), 1477–1489.
    Chow, G. C. (1960). Tests of equality between sets of coefficients in two linear regressions. Econometrica: Journal of the Econometric Society, 28, 591–605.
    Chu, C. S. J., Stinchcombe, M., & White, H. (1996). Monitoring structural change. Econometrica: Journal of the Econometric Society, 64(5), 1045–1065.
    Çinar, A. (1995). Nonlinear time series models for multivariable dynamic processes. Chemometrics and Intelligent Laboratory Systems, 30(1), 147–158.
    Ciner, C. (2017). Predicting white metal prices by a commodity sensitive exchange rate. International Review of Financial Analysis, 52, 309–315.
    Cologni, A., & Manera, M. (2008). Oil prices, inflation and interest rates in a structural cointegrated VAR model for the G-7 countries. Energy Economics, 30(3), 856–888.
    Cró, S., & Martins, A. M. (2017). Structural breaks in international tourism demand: Are they caused by crises or disasters? Tourism Management, 63, 3–9.
    Dehghani, H. (2018). Forecasting copper price using gene expression programming. Journal of Mining and Environment, 9(2), 349–360.
    Dehghani, H., & Bogdanovic, D. (2018). Copper price estimation using bat algorithm. Resources Policy, 55, 55–61.
    Deng, L., & Yu, D. (2014). Deep learning: methods and applications. Foundations and Trends in Signal Processing, 7(3–4), 197–387.
    Diez-Sierra, J., & del Jesus, M. (2020). Long-term rainfall prediction using atmospheric synoptic patterns in semi-arid climates with statistical and machine learning methods. Journal of Hydrology, 586, 124789.
    Domhan, T., Springenberg, J. T., & Hutter, F. (2015). Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves. Twenty-Fourth International Joint Conference on Artificial Intelligence.
    Du, W., Chen, Z. P., Zhong, L. J., Wang, S. X., Yu, R. Q., Nordon, A., Littlejohn, D., & Holden, M. (2011). Maintaining the predictive abilities of multivariate calibration models by spectral space transformation. Analytica Chimica Acta, 690(1), 64–70.
    Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal of the Econometric Society, 987–1007.
    Fahlman, S. E., & Lebiere, C. (1990). The cascade-correlation learning architecture. Advances in Neural Information Processing Systems, 524–532.
    Farid, D. M., Zhang, L., Hossain, A., Rahman, C. M., Strachan, R., Sexton, G., & Dahal, K. (2013). An adaptive ensemble classifier for mining concept drifting data streams. Expert Systems with Applications, 40(15), 5895–5906.
    Fornaciari, M., & Grillenzoni, C. (2017). Evaluation of online trading systems: Markov-switching vs time-varying parameter models. Decision Support Systems, 93, 51–61.
    Frean, M. (1990). The upstart algorithm: A method for constructing and training feedforward neural networks. Neural Computation, 2(2), 198–209.
    Gama, J., & Kosina, P. (2014). Recurrent concepts in data streams classification. Knowledge and Information Systems, 40(3), 489–507.
    Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on concept drift adaptation. ACM Computing Surveys (CSUR), 46(4), 1–37.
    García, D., & Kristjanpoller, W. (2019). An adaptive forecasting approach for copper price volatility through hybrid and non-hybrid models. Applied Soft Computing Journal, 74, 466–478.
    Garcia, R., & Perron, P. (1996). An analysis of the real interest rate under regime shifts. The Review of Economics and Statistics, 111–125.
    Gargano, A., & Timmermann, A. (2014). Forecasting commodity price indexes using macroeconomic and financial predictors. International Journal of Forecasting, 30(3), 825–843.
    Gharleghi, B., Md Nor, A. H. S., & Sarmidi, T. (2014). Application of the threshold model for modelling and forecasting of exchange rate in selected ASEAN countries. Sains Malaysiana, 43(10), 1609–1622.
    Giannella, C., Han, J., Pei, J., Yan, X., & Yu, P. S. (2003). Mining frequent patterns in data streams at multiple time granularities. Next Generation Data Mining, 212, 191–212.
    Guo, H., Li, S., Li, B., Ma, Y., & Ren, X. (2018). A new learning automata-based pruning method to train deep neural networks. IEEE Internet of Things Journal, 5(5), 3263–3269.
    Hahnloser, R. H., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J., & Seung, H. S. (2000). Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature, 405(6789), 947–951.
    Hansen, B. E. (2001). The new econometrics of structural change: Dating breaks in U.S. labor productivity. Journal of Economic Perspectives, 15(4), 117–128.
    Hao, W., & Yu, S. (2006). Support vector regression for financial time series forecasting. International Conference on Programming Languages for Manufacturing, 825–830.
    He, B., Huang, H., & Yuan, K. (2016). Managing supply disruption through procurement strategy and price competition. International Journal of Production Research, 54(7), 1980–1999.
    Herna ́ndez, E., Kristjanpoller, W., Hernández, E., & Herna ́ndez, E. (2017). Volatility of main metals forecasted by a hybrid ANN–GARCH model with regressors. Expert Systems with Applications, 84, 290–300.
    Hernes, G. (1976). Structural change in social processes. American Journal of Sociology, 82(3), 513–547.
    Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Comput, 9(8), 1735–1780.
    Hu, Y., Ni, J., & Wen, L. (2020). A hybrid deep learning approach by integrating LSTM-ANN networks with GARCH model for copper price volatility prediction. Physica A: Statistical Mechanics and Its Applications, 557, 124907.
    Hu, Z., Zhang, J., & Ge, Y. (2021). Handling vanishing gradient problem using artificial derivative. IEEE Access, 9, 22371–22377.
    Huang, W., Nakamori, Y., & Wang, S. Y. (2005). Forecasting stock market movement direction with support vector machine. Computers & Operations Research, 32(10), 2513–2522.
    Jiang, X., Adeli, H., Shi, L., Chu, L. K., Chen, Y. H., Jiang, X., & Adeli, H. (2005). Dynamic wavelet neural network model for traffic flow forecasting. Journal of Transportation Engineering, 131(10), 771–779.
    Karakoyun, E. S., & Cibikdiken, A. O. (2018). Comparison of arima time series model and lstm deep learning algorithm for bitcoin price forecasting. The 13th Multidisciplinary Academic Conference in Prague, 2018, 171–180.
    Kashani, M. N., Aminian, J., Shahhosseini, S., & Farrokhi, M. (2012). Dynamic crude oil fouling prediction in industrial preheaters using optimized ANN based moving window technique. Chemical Engineering Research and Design, 90(7), 938–949.
    Katakis, I., Tsoumakas, G., & Vlahavas, I. (2010). Tracking recurring contexts using ensemble classifiers: An application to email filtering. Knowledge and Information Systems, 22(3), 371–391.
    Khashei, M., & Bijari, M. (2011). A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Applied Soft Computing, 11(2), 2664–2675.
    Khoshalan, H. A., Shakeri, J., Najmoddini, I., & Asadizadeh, M. (2021). Forecasting copper price by application of robust artificial intelligence techniques. Resources Policy, 73, 102239.
    Kim, K. J. (2003). Financial time series forecasting using support vector machines. Neurocomputing, 55(1–2), 307–319.
    Kingma, D. P., & Ba, J. L. (2014). Adam: A method for stochastic optimization. ArXiv Preprint ArXiv:1412.6980.
    Klinkenberg, R. (2004). Learning drifting concepts: Example selection vs. example weighting. Intelligent Data Analysis, 8(3), 281–300.
    Klinkenberg, R., & Joachims, T. (2000). Detecting concept drift with support vector machines. ICML, 487–494.
    Koitsiwe, K., & Adachi, T. (2017). The impact of structure change on copper prices. Geo-Resources Environment and Engineering (GREE), 2, 68–71.
    Koitsiwe, K., & Adachi, T. (2018). The role of financial speculation in copper prices. Applied Economics and Finance, 5(4), 87.
    Kosina, P., & Gama, J. (2015). Very fast decision rules for classification in data streams. Data Mining and Knowledge Discovery, 29(1), 168–202.
    Kristjanpoller, W., & Minutolo, M. C. (2015). Gold price volatility: A forecasting approach using the artificial neural network–GARCH model. Expert Systems with Applications, 42(20), 7245–7251.
    Kristjanpoller, W., & Minutolo, M. C. (2016). Forecasting volatility of oil price using an artificial neural network–GARCH model. Expert Systems with Applications, 65, 233– 241.
    Krüger, J. J. (2008). Productivity and structural change: A review of the literature. Journal of Economic Surveys, 22(2), 330–363.
    Lasheras, F. S., de Cos Juez, F. J., Sánchez, A. S., Krzemień, A., & Fernández, P. R. (2015). Forecasting the COMEX copper spot price by means of neural networks and ARIMA models. Resources Policy, 45(September 2015), 37–43.
    Lazli, L., & Boukadoum, M. (2013). Hidden neural network for complex pattern recognition: A comparison study with multi-neural network based approach. International Journal of Life Science and Medical Research, 3(6), 234–245.
    LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444.
    Leung, C. K.-S., & Khan, Q. I. (2006). DSTree: A tree structure for the mining of frequent sets from data streams. Sixth International Conference on Data Mining (ICDM’06), 928–932.
    Li, G., & Li, Y. (2015). Forecasting copper futures volatility under model uncertainty. Resources Policy, 46, 167–176.
    Li, J., Maier, D., Tufte, K., Papadimos, V., & Tucker, P. A. (2005). No pane, no gain: Efficient evaluation of sliding-window aggregates over data streams. Acm Sigmod Record, 34(1), 39–44.
    Liao, R., Boonyakunakorn, P., Harnpornchai, N., & Sriboonchitta, S. (2020). Forecasting the exchange rate for USD to RMB using RNN and SVM. Journal of Physics: Conference Series, 1616(1), 12050.
    Liu, C., Hu, Z., Li, Y., & Liu, S. (2017). Forecasting copper prices by decision tree learning. Resources Policy, 52, 427–434.
    Liu, J., Wu, S., & Zidek, J. V. (1997). On segmented multivariate regressions. Statistica Sinica, 497–525.
    Liu, Y., Yang, C., Huang, K., & Gui, W. (2020). Non-ferrous metals price forecasting based on variational mode decomposition and LSTM network. Knowledge-Based Systems, 188, 105006.
    Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., & Zhang, G. (2018). Learning under concept drift: A review. IEEE Transactions on Knowledge and Data Engineering, 31(12), 2346–2363.
    Lu, J., Liu, A., Song, Y., & Zhang, G. (2020). Data-driven decision support under concept drift in streamed big data. Complex & Intelligent Systems, 6(1), 157–163.
    Mahata, A., Bal, D. P., & Nurujjaman, M. (2020). Identification of short-term and long-term time scales in stock markets and effect of structural break. Physica A: Statistical Mechanics and Its Applications, 545, 123612.
    Matsuyama, K. (2008). Structural change. The New Palgrave Dictionary of Economics, 2.
    Mezard, M., & Nadal, J. P. (1989). Learning in feedforward layered networks: The tiling algorithm. Journal of Physics A: Mathematical and General, 22(12), 2191.
    Morales, L., & Andreosso-O’Callaghan, B. (2011). Comparative analysis on the effects of the Asian and global financial crises on precious metal markets. Research in International Business and Finance, 25(2), 203–227.
    Mozafari, B., Thakkar, H., & Zaniolo, C. (2008). Verifying and mining frequent patterns from large windows over data streams. 2008 IEEE 24th International Conference on Data Engineering, 179–188.
    Mussagy, I. H., & BigramoAllaro, H. (2016). Structural change in Mozambique: Economic performance before and after the civil war. Journal of Economic and Sustainable Development, 7, 119–125.
    Muthuramu, P., & Maheswari, T. U. (2019). Tests for structural breaks in time series analysis: A review of recent development. Shanlax International Journal of Economics, 7(4), 66–79.
    Nalepa, J., & Kawulok, M. (2019). Selecting training sets for support vector machines: A review. Artificial Intelligence Review, 52(2), 857–900.
    Nasir, M. A., & Vo, X. V. (2020). A quarter century of inflation targeting & structural change in exchange rate pass-through: Evidence from the first three movers. Structural Change and Economic Dynamics, 54, 42–61.
    Nielsen, B., & Whitby, A. (2015). A joint chow test for structural instability. Econometrics, 3(1), 156–186.
    Nikzad, M., Movagharnejad, K., & Talebnia, F. (2012). Comparative study between neural network model and mathematical models for prediction of glucose concentration during enzymatic hydrolysis. International Journal of Computer Applications, 56(1).
    Niu, T., Wang, J., Lu, H., Yang, W., & Du, P. (2020). Developing a deep learning framework with two-stage feature selection for multivariate financial time series forecasting. Expert Systems with Applications, 148, 113237.
    Ooyen, A. Van, & Nienhuis, B. (1992). Improving the convergence of the back-propagation algorithm. Neural Netw, 5(3), 465–471.
    Orlowski, L. T. (2017). Volatility of commodity futures prices and market-implied inflation expectations. Journal of International Financial Markets, Institutions and Money, 51, 133–141.
    Ozaki, T. (1980). Non-linear time series models for non-linear random vibrations. Journal of Applied Probability, 17(1), 84–93.
    Parisi, A., Parisi, F., & D ́ıaz, D. (2008). Forecasting gold price changes: Rolling and recursive neural network models. Journal of Multinational Financial Management, 18(5), 477– 487.
    Parveen, N., Zaidi, S., & Danish, M. (2017). Support vector regression prediction and analysis of the copper (II) biosorption efficiency. Indian Chemical Engineer, 59(4), 295–311.
    Passerini, E. (2000). Disasters as agents of social change in recovery and reconstruction. Natural Hazards Review, 1(2), 67–72.
    Perron, P., Yamamoto, Y., & Zhou, J. (2020). Testing jointly for structural changes in the error variance and coefficients of a linear regression model. Quantitative Economics, 11(3), 1019–1057.
    Quandt, R. E. (1958). The estimation of the parameters of a linear regression system obeying two separate regimes. Journal of the American Statistical Association, 53(284), 873–880.
    Quandt, R. E. (1960). Tests of the hypothesis that a linear regression system obeys two separate regimes. Journal of the American Statistical Association, 55(290), 324–330.
    Rossen, A. (2015). What are metal prices like? Co-movement, price cycles and long-run trends. Resources Policy, 45, 255–276.
    Sarnovsky, M., & Kolarik, M. (2021). Classification of the drifting data streams using heterogeneous diversified dynamic class-weighted ensemble. PeerJ Computer Science, 7, 459.
    Schaffer, A. L., Dobbins, T. A., & Pearson, S. A. (2021). Interrupted time series analysis using autoregressive integrated moving average (ARIMA) models: A guide for evaluating large-scale health interventions. BMC Medical Research Methodology, 21(1), 1–12.
    Schalkoff, R. J. (2007). Pattern recognition. Wiley Encyclopedia of Computer Science and Engineering.
    Sharma, R., Pachori, R. B., & Sircar, P. (2020). Seizures classification based on higher order statistics and deep neural network. Biomedical Signal Processing and Control, 59, 101921.
    Sharma, R., Saxena, A., & Vagrecha, K. (2015). Supply chain optimization of zinc industry: Opportunities, strategies and challenges. Global Journal of Enterprise Information System, 7(3), 62–70.
    Shokry, A., & Espuña, A. (2018). The ordinary kriging in multivariate dynamic modelling and multistep-ahead prediction. Computer Aided Chemical Engineering, 43, 265–270.
    Stevenson, S. (2007). A comparison of the forecasting ability of ARIMA models. Journal of Property Investment & Finance, 25(3), 223–240.
    Suárez-Cetrulo, A. L., Cervantes, A., & Quintana, D. (2019). Incremental market behavior classification in presence of recurring concepts. Entropy, 21(1), 25.
    Talih, M., & Hengartner, N. (2005). Structural learning with time-varying components: Tracking the cross-section of financial time series. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(3), 321–341.
    Tong, H. (1977). Some comments on the Canadian lynx data. Journal of the Royal Statistical Society: Series A (General), 140(4), 432–436.
    Tong, H., & Lim, K. S. (2009). Threshold autoregression, limit cycles and cyclical data. Exploration Of A Nonlinear World: An Appreciation of Howell Tong’s Contributions to Statistics, 9–56.
    Tsai, Y. H., Jheng, Y. J., & Tsaih, R. H. (2019). The cramming, softening and integrating learning algorithm with parametric ReLU activation function for binary input/output problems. 2019 International Joint Conference on Neural Networks (IJCNN), 1–7.
    Tsaih, R. H., & Cheng, T. C. (2009). A resistant learning procedure for coping with outliers. Annals of Mathematics and Artificial Intelligence, 57(2), 161–180.
    Tsaih, R. R. (1993). The softening learning procedure. Mathematical and Computer Modelling, 18(8), 61–64.
    Tsaih, R. R. (1998). An explanation of reasoning neural networks. Mathematical and Computer Modelling, 28(2), 37–44.
    Tsymbal, A. (2004). The problem of concept drift: Definitions and related work. Computer Science Department, Trinity College Dublin, 106(2), 58.
    Verbesselt, J., Hyndman, R., Newnham, G., & Culvenor, D. (2010). Detecting trend and seasonal changes in satellite image time series. Remote Sensing of Environment, 114(1), 106–115.
    Wahab, B. A., & Adewuyi, A. O. (2021). Analysis of major properties of metal prices using new methods: Structural breaks, non-linearity, stationarity and bubbles. Resources Policy, 74, 102284.
    Wang, C., Zhang, X., Wang, M., Lim, M. K., & Ghadimi, P. (2019). Predictive analytics of the copper spot price by utilizing complex network and artificial neural network techniques. Resources Policy, 63, 101414.
    Wang, H., Fan, W., Yu, P. S., & Han, J. (2003). Mining concept-drifting data streams using ensemble classifiers. Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 226–235.
    Wang, J., Lu, S., Wang, S.-H., & Zhang, Y.-D. (2021). A review on extreme learning machine. Multimedia Tools and Applications 2021, 1–50.
    Wang, T., & Wang, C. (2019). The spillover effects of China’s industrial growth on price changes of base metal. Resources Policy, 61, 375–384.
    Watanabe, E., & Shimizu, H. (1993). Algorithm for pruning hidden units in multilayered neural network for binary pattern classification problem. Proceedings of 1993 International Conference on Neural Networks, 327–330.
    Wets, R. J. B., & Rios, I. (2015). Modeling and estimating commodity prices: Copper prices. Mathematics and Financial Economics, 9(4), 247–270.
    Yao, Y. C. (1988). Estimating the number of change-points via Schwarz’criterion. Statistics & Probability Letters, 6(3), 181–189.
    Yao, Y. C., & Au, S. T. (1989). Least-squares estimation of a step function. The Indian Journal of Statistics, 370–381.
    Yin, Y. Q. (1988). Detection of the number, locations and magnitudes of jumps. Communications in Statistics. Stochastic Models, 4(3), 445–455.
    Yu, L., Wang, S., & Lai, K. K. (2005). A novel nonlinear ensemble forecasting model incorporating GLAR and ANN for foreign exchange rates. Computers and Operations Research, 32(10), 2523–2541.
    Zeileis, A., Kleiber, C., Krämer, W., & Hornik, K. (2003). Testing and dating of structural changes in practice. Computational Statistics & Data Analysis, 44(1–2), 109–123.
    Zeiler, M. D. (2012). ADADELTA: An adaptive learning rate method. ArXiv Preprint ArXiv:1212.5701.
    Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159–175.
    Zhang, H., Nguyen, H., Bui, X.-N., Pradhan, B., Mai, N.-L., & Vu, D.-A. (2021). Proposing two novel hybrid intelligence models for forecasting copper price based on extreme learning machine and meta-heuristic algorithms. Resources Policy, 73, 102195.
    Zhang, H., Nguyen, H., Vu, D.-A., Bui, X.-N., & Pradhan, B. (2021). Forecasting monthly copper price: A comparative study of various machine learning-based methods. Resources Policy, 73, 102189.
    Zheng, Y., Shao, Y., & Wang, S. (2017). The determinants of Chinese nonferrous metals imports and exports. Resources Policy, 53, 238–246.
    Description: 碩士
    國立政治大學
    資訊管理學系
    109356003
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109356003
    Data Type: thesis
    DOI: 10.6814/NCCU202200079
    Appears in Collections:[Department of MIS] Theses

    Files in This Item:

    File Description SizeFormat
    600301.pdf2424KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback