English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52558698      Online Users : 1164
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 會議論文 >  Item 140.119/138287
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/138287


    Title: Defense against N-pixel Attacks based on Image Reconstruction
    Authors: 左瑞麟
    Tso, Raylin
    Liu, Zi-Yuan
    Wang, Peter Shaojui
    Hsiao, Shou-Ching
    Contributors: 資科系
    Keywords: Adversarial Examples;N-pixel Attacks;Image Reconstruction;Defense
    Date: 2020-10
    Issue Date: 2021-12-09 16:09:27 (UTC+8)
    Abstract: Since machine learning and deep learning are largely used for image recognition in real-world applications, how to avoid adversarial attacks become an important issue. It is common that attackers add adversarial perturbation to a normal image in order to fool the models. The N-pixel attack is one of the recently popular adversarial methods by simply changing a few pixels in the image. We observe that changing the few pixels leads to an obvious difference with its neighboring pixels. Therefore, this research aims to defend the N-pixel attacks based on image reconstruction. We develop a three-staged reconstructing algorithm to recover the fooling images. Experimental results show that the accuracy of CIFAR-10 test dataset can reach 92% after applying our proposed algorithm, indicating that the algorithm can maintain the original inference accuracy on normal dataset. Besides, the effectiveness of defending N-pixel attacks is also validated by reconstructing 500 attacked images using the proposed algorithm. The results show that we have a 90% to 92% chance of successful defense, where N=1,3,5,10,and 15.
    Relation: SBC `20: Proceedings of the 8th International Workshop on Security in Blockchain and Cloud Computing, pp.3-7
    Data Type: conference
    DOI 連結: https://doi.org/10.1145/3384942.3406867
    DOI: 10.1145/3384942.3406867
    Appears in Collections:[資訊科學系] 會議論文

    Files in This Item:

    File SizeFormat
    21.pdf2507KbAdobe PDF2305View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback