English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51680817      Online Users : 571
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/137282
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/137282


    Title: 應用文字探勘於業配文揭露偵測
    Sponsored Content Detection with Text Mining Approach
    Authors: 洪御哲
    Hung, Yu-Jhe
    Contributors: 洪為璽
    Hung, Wei-Hsi
    洪御哲
    Hung, Yu-Jhe
    Keywords: 業配文
    內容行銷
    文字探勘
    機器學習
    自然語言處理
    Sponsored Content
    Content Marketing
    Text Mining
    Machine Learning
    Natural Language Processing
    Date: 2021
    Issue Date: 2021-10-01 10:02:40 (UTC+8)
    Abstract: 業配文是在廣告媒體內容中有目的地整合品牌或品牌說服性訊息,以換取贊助商的報酬。在網際網路與行動裝置的普及下,社群媒體快速成長,捧紅了許多「網紅」高影響力者,看上此高度個人化與可控制內容的特性,使廠商將資源投入在這些人身上,以獲取商品的曝光與銷售。但是業配文常常會有假分享真業配的問題,讓消費者認為是自己的真實體驗分享,而非商業贊助,可能誤導消費者進行消費,故本研究目的在於能否建立一個模型找出背後可能是未揭露的業配文章。首先,先搜集痞客邦百大部落客的資料,建立會揭露業配之部落客名冊,再搜集該部落客發表過的所有文章,藉由揭露文字標注業配文與非業配文。然後透過機器學習方法SVM、CNN與Google所開發的深度語言模型BERT進行訓練與比較,最後以CNN平均得出最高的準確度83.625%,同時,在我們標注的未揭露業配文章資料中,CNN能夠偵測業配文的準確度為90.69%。最後,應用逐層相關傳播LRP解釋CNN模型,觀察哪些常出現業配文文字最可能被預測為業配文,比較模型與人為觀點,並藉此找出業配文的特徵,以提供給消費者進行判斷。
    Sponsored content is purposefully incorporating commercial brands into editorial content. With the popularization of the Internet and mobile devices, social media has proliferated and gained popularity among key opinion leaders (KOLs) who have substantial influencing power in the specific social network. This highly personalized and controllable content allows manufacturers to invest resources in KOLs to obtain more exposure and sales of goods. However, sponsored content often has the problem of undisclosed sponsorship. It makes consumers feel it is a personal and authentic experience rather than sponsored content. Undisclosed sponsored content may mislead consumers to buy their products. Therefore, this research aims to build a model to find out the undisclosed sponsored content. This paper establishes the roster from the top 100 ranks of bloggers who will disclose sponsorship in their articles in Pixnet. Afterward, all the published articles are labeled sponsored and non-sponsored by the sentences they used in the disclosure. The datasets with labels of whether disclosed or undisclosed sponsored content are completed. These datasets will be trained and compared through machine learning methods Support Vector Machine (SVM), Convolutional Neural Network (CNN) and the deep language model Bidirectional Encoder Representations from Transformers (BERT) developed by Google. Finally, CNN has the highest accuracy of 83.625%. At the same time, CNN can detect sponsored content with an accuracy of 90.69% in the undisclosed sponsored content we labeled. Finally, the Layer-wise Relevance Propagation (LRP) explains the CNN model and observes which word frequently appears in sponsored content. We can find out the characteristics of sponsored content and provide it for consumers to make a purchase decision.
    Reference: 財團法人臺灣網路資訊中心(2019)。2019 臺灣網路報告。2019 年 12 月 22 日,資料引自 https://report.twnic.tw/2019/。
    公平交易委員會(2017)。公平交易委員會對於薦證廣告之規範說明。https://www.ftc.gov.tw/internet/main/doc/docDetail.aspx?uid=165&docid=13021
    王毓莉(2014)。台灣新聞記者對「業配新聞」的馴服與抗拒。新聞學研究(119), 45-79。http://ir.lib.pccu.edu.tw/handle/987654321/38722
    Activate. (2018). Exploring the Brand and Influencer Relationship in Influencer Marketing. Retrieved from: https://try.activate.social/2018-state-of-influencer-study
    Aggarwal, C. C., & Zhai, C. (2012). A Survey of Text Classification Algorithms. In C. C. Aggarwal & C. Zhai (Eds.), Mining Text Data (pp. 163-222). Boston, MA: Springer US.
    Arras, L., Horn, F., Montavon, G., Müller, K.-R., & Samek, W. (2017). "What is relevant in a text document?": An interpretable machine learning approach. PloS one, 12(8), e0181142. doi:10.1371/journal.pone.0181142
    Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., & Samek, W. (2015). On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation. PloS one, 10(7), e0130140. doi:10.1371/journal.pone.0130140
    Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural Machine Translation by Jointly Learning to Align and Translate. arXiv:1409.0473. Retrieved from https://ui.adsabs.harvard.edu/abs/2014arXiv1409.0473B
    Becker-Olsen, K. L. (2003). And Now, A Word from Our Sponsor--A Look at the Effects of Sponsored Content and Banner Advertising. Journal of Advertising, 32(2), 17-32. doi:10.1080/00913367.2003.10639130
    Bengio, Y., Ducharme, R., Vincent, P., & Janvin, C. (2003). A neural probabilistic language model. Journal of Machine Learning Research, 3, 1137–1155.
    Bhatnagar, N., Aksoy, L., & Malkoc, S. A. (2003). Embedding Brands Within Media Content: The Impact of Message, Media, and Consumer Characteristics on Placement Efficacy. In The psychology of entertainment media (pp. 110-127): Erlbaum Psych Press.
    Bivins, T. (2017). Mixed media: Moral distinctions in advertising, public relations, and journalism: Routledge. Journalism and Mass Communication Quarterly, 81(1), 187-188.
    Commission, F. T. (2017). The FTC’s endorsement guides: What people are asking. Retrieved from https://www.ftc.gov/tips-advice/business-center/guidance/ftcs-endorsement-guides-what-people-are-asking
    Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. Machine Learning, 20(3), 273-297. doi:10.1007/BF00994018
    Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv:1810.04805. Retrieved from https://ui.adsabs.harvard.edu/abs/2018arXiv181004805D
    Durbhakula, V. V. K., & Kim, D. J. (2011). E-business for Nations: A Study of National Level E-business Adoption Factors Using Country Characteristics-Business-Technology-Government Framework. Journal of Theoretical and Applied Electronic Commerce Research, 6(3), 1-12. Retrieved from https://search.proquest.com/scholarly-journals/e-business-nations-study-national-level-adoption/docview/915869254/se-2?accountid=13877
    Geyser, W. (2021). The State of Influencer Marketing 2020: Benchmark Report. Retrieved from https://influencermarketinghub.com/influencer-marketing-benchmark-report-2020/
    Hartmann, N., Fonseca, E., Shulby, C., Treviso, M., Rodrigues, J., & Aluisio, S. (2017). Portuguese Word Embeddings: Evaluating on Word Analogies and Natural Language Tasks. arXiv:1708.06025. Retrieved from https://ui.adsabs.harvard.edu/abs/2017arXiv170806025H
    Hulse, J. V., Khoshgoftaar, T. M., & Napolitano, A. (2007). Experimental perspectives on learning from imbalanced data. Paper presented at the Proceedings of the 24th international conference on Machine learning, Corvalis, Oregon, USA. https://doi.org/10.1145/1273496.1273614
    Ikonen, P., Luoma-aho, V., & Bowen, S. A. (2017). Transparency for Sponsored Content: Analysing Codes of Ethics in Public Relations, Marketing, Advertising and Journalism. International Journal of Strategic Communication, 11(2), 165-178. doi:10.1080/1553118X.2016.1252917
    Japkowicz, N. (2000). Learning from imbalanced data sets: a comparison of various strategies. Paper presented at the AAAI workshop on learning from imbalanced data sets.
    Jiang, M., Liang, Y., Feng, X., Fan, X., Pei, Z., Xue, Y., & Guan, R. (2018). Text classification based on deep belief network and softmax regression. Neural Computing and Applications, 29(1), 61-70. doi:10.1007/s00521-016-2401-x
    Johnson, R., & Zhang, T. (2014). Effective Use of Word Order for Text Categorization with Convolutional Neural Networks. arXiv:1412.1058. Retrieved from https://ui.adsabs.harvard.edu/abs/2014arXiv1412.1058J
    Ju-Pak, G.-H., Kim, B.-H., & Cameron, G. (1995). Trends in the use and abuse of advertorials in magazines. Mass Communication Review, 22, 112-128.
    Kapitan, S., & Silvera, D. H. (2016). From digital media influencers to celebrity endorsers: attributions drive endorser effectiveness. Marketing Letters, 27(3), 553-567. doi:10.1007/s11002-015-9363-0
    Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. arXiv:1408.5882. Retrieved from https://ui.adsabs.harvard.edu/abs/2014arXiv1408.5882K
    Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu, S., Barnes, L., & Brown, D. (2019). Text Classification Algorithms: A Survey. Information, 10(4), 150.
    Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. doi:10.1109/5.726791
    Li, L., Xiao, L., Wang, N., Yang, G., & Zhang, J. (2017, 13-16 Dec. 2017). Text classification method based on convolution neural network. Paper presented at the 2017 3rd IEEE International Conference on Computer and Communications (ICCC).
    Liao, H.-L., Liu, S.-H., & Chou, C.-H. (2015). An exploratory study of product placement in social media. Internet Research, 25(2), 300-316. doi:10.1108/IntR-12-2013-0267
    Liu, T., Fang, S., Zhao, Y., Wang, P., & Zhang, J. (2015). Implementation of Training Convolutional Neural Networks. arXiv:1506.01195. Retrieved from https://ui.adsabs.harvard.edu/abs/2015arXiv150601195L
    McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276-282.
    Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. arXiv:1301.3781. Retrieved from https://ui.adsabs.harvard.edu/abs/2013arXiv1301.3781M
    Montavon, G., Binder, A., Lapuschkin, S., Samek, W., & Müller, K.-R. (2019). Layer-Wise Relevance Propagation: An Overview. In W. Samek, G. Montavon, A. Vedaldi, L. K. Hansen, & K.-R. Müller (Eds.), Explainable AI: Interpreting, Explaining and Visualizing Deep Learning (pp. 193-209). Cham: Springer International Publishing.
    Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2017). Deep contextualized word representations. arXiv:1802.05365. Retrieved from https://ui.adsabs.harvard.edu/abs/2018arXiv180205365P
    Prusa, J., Khoshgoftaar, T. M., Dittman, D. J., & Napolitano, A. (2015). Using Random Undersampling to Alleviate Class Imbalance on Tweet Sentiment Data. Paper presented at the 2015 IEEE International Conference on Information Reuse and Integration.
    Singla, Z., Randhawa, S., & Jain, S. (2017). Sentiment analysis of customer product reviews using machine learning. Paper presented at the 2017 International Conference on Intelligent Computing and Control (I2C2).
    van Reijmersdal, E., Neijens, P., & Smit, E. G. (2009). A New Branch of Advertising. Journal of Advertising Research, 49(4), 429.
    Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin, I. (2017). Attention Is All You Need. arXiv:1706.03762. Retrieved from https://ui.adsabs.harvard.edu/abs/2017arXiv170603762V
    Wang, Z., Sun, X., Zhang, D., & Li, X. (2006, 13-16 Aug. 2006). An Optimal SVM-Based Text Classification Algorithm. Paper presented at the 2006 International Conference on Machine Learning and Cybernetics.
    Wojdynski, B. W., Evans, N. J., & Hoy, M. G. (2018). Measuring Sponsorship Transparency in the Age of Native Advertising. Journal of Consumer Affairs, 52(1), 115-137. doi:https://doi.org/10.1111/joca.12144
    Wu, H., Li, D., & Cheng, M. (2019). Chinese text classification based on character-level CNN and SVM. International Journal of Intelligent Information and Database Systems, 12(3), 212-228.
    Yang, Y., Tresp, V., Wunderle, M., & Fasching, P. A. (2018, 4-7 June 2018). Explaining Therapy Predictions with Layer-Wise Relevance Propagation in Neural Networks. Paper presented at the 2018 IEEE International Conference on Healthcare Informatics (ICHI).
    Yang, X., Kim, S., & Sun, Y. (2019). How do influencers mention brands in social media? sponsorship prediction of Instagram posts. Paper presented at the Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Vancouver, British Columbia, Canada. https://doi.org/10.1145/3341161.3342925
    Zarei, K., Ibosiola, D., Farahbakhsh, R., Gilani, Z., Garimella, K., Crespi, N., & Tyson, G. (2020). Characterising and Detecting Sponsored Influencer Posts on Instagram. arXiv:2011.05757. Retrieved from https://ui.adsabs.harvard.edu/abs/2020arXiv201105757Z
    Description: 碩士
    國立政治大學
    資訊管理學系
    108356021
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108356021
    Data Type: thesis
    DOI: 10.6814/NCCU202101593
    Appears in Collections:[資訊管理學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    602101.pdf5619KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback