政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/137166
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114014/145046 (79%)
Visitors : 52056761      Online Users : 585
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/137166


    Title: 具可調整風險偏好之深度強化學習資產配置系統
    A Deep Reinforcement Learning Portfolio Management System with Adjustable Risk Preference
    Authors: 張天慈
    Chang, Tain-Tzu
    Contributors: 胡毓忠
    Hu, Yuh Jong
    張天慈
    Chang, Tain-Tzu
    Keywords: 深度強化學習
    強化學習
    資產配置系統
    風險偏好
    Deep Reinforcement Learning
    Reinforcement Learning
    Portfolio Management System
    Risk Preference
    Asset Allocation
    OpenAI gym
    Date: 2021
    Issue Date: 2021-09-02 18:17:46 (UTC+8)
    Abstract: 我們導入了一個具可調整風險偏好之深度強化學習資產配置系統。透過變更門檻參數,此系統可提供適合不同風險容忍度的投資者合適的投資組合。實驗結果顯示此系統在多數情況最大跌幅和年化報酬上皆優於固定比重投資組合。相同的做法也可用於其他投資者偏好,例如BlackLitterman模型中的投資者觀點。
    We introduced a DRL-based portfolio management system with adjustable risk preference. The system can produce portfolio s that meet different investors’risk preference by adjusting the threshold parameter.The experiment results show that for most cases, our system outperformed the constant rebalanced portfolio (CRP) in terms of maximum drawdown (MDD) and Compound annual growth rate (CAGR). The same approach has the potential to apply to different investors’ preferences, like the opinion of the investor used in the Black–Litterman model.
    Reference: [1] Black, F., and Litterman, R. Global portfolio optimization. Financial analysts journal
    48, 5 (1992), 28–43.
    [2] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and
    Zaremba, W. Openai gym. arXiv preprint arXiv:1606.01540 (2016).
    [3] Chang, E. Why you likely have too many mutual funds or etfs, Sep 2016.
    [4] Cogneau, P., and Hübner, G. The 101 ways to measure portfolio performance. Available
    at SSRN 1326076 (2009).
    [5] Fischer, T., and Krauss, C. Deep learning with long shortterm
    memory networks
    for financial market predictions. European Journal of Operational Research 270, 2
    (2018), 654 – 669.
    [6] Fujimoto, S., Hoof, H., and Meger, D. Addressing function approximation error
    in actorcritic
    methods. In International Conference on Machine Learning (2018),
    PMLR, pp. 1587–1596.
    [7] Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actorcritic:
    Offpolicy
    maximum entropy deep reinforcement learning with a stochastic actor, 2018.
    [8] Johansen, A., and Sornette, D. Stock market crashes are outliers. The European
    Physical Journal BCondensed
    Matter and Complex Systems 1, 2 (1998), 141–143.
    [9] Johansen, A., and Sornette, D. Large stock market price drawdowns are outliers.
    Journal of Risk 4 (2002), 69–110.
    [10] Kahneman, D., and Tversky, A. An analysis of decision under risk. Econometrica
    36 (2000).
    [11] Krauss, C., Do, X. A., and Huck, N. Deep neural networks, gradientboosted
    trees,
    random forests: Statistical arbitrage on the s&p 500. European Journal of Operational
    Research 259, 2 (2017), 689 – 702.
    [12] Levine, S., Finn, C., Darrell, T., and Abbeel, P. Endtoend
    training of deep visuomotor
    policies. The Journal of Machine Learning Research 17, 1 (2016), 1334–1373.
    [13] MagdonIsmail,
    M., and Atiya, A. F. Maximum drawdown. Risk Magazine 17, 10
    (2004), 99–102.
    [14] Markowitz, H. Portfolio selection. The Journal of Finance 7, 1 (1952), 77–91.
    [15] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
    and Riedmiller, M. Playing atari with deep reinforcement learning. arXiv preprint
    arXiv:1312.5602 (2013).
    [16] Moody, J., and Lizhong Wu. Optimization of trading systems and portfolios. In
    Proceedings of the IEEE/IAFE 1997 Computational Intelligence for Financial Engineering
    (CIFEr) (1997), pp. 300–307.
    [17] Moody, J., and Saffell, M. Learning to trade via direct reinforcement. IEEE Transactions
    on Neural Networks 12, 4 (2001), 875–889.
    [18] Moody, J., Wu, L., Liao, Y., and Saffell, M. Performance functions and reinforcement
    learning for trading systems and portfolios. Journal of Forecasting 17, 56
    (1998), 441–470.
    [19] Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. Trust region policy
    optimization. In International conference on machine learning (2015), PMLR,
    pp. 1889–1897.
    [20] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal policy
    optimization algorithms. arXiv preprint arXiv:1707.06347 (2017).
    [21] Sharpe, W. F. The sharpe ratio. The Journal of Portfolio Management 21, 1 (1994),
    49–58.
    [22] Silver, D., Lever, G.,Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. Deterministic
    policy gradient algorithms. In International conference on machine learning
    (2014), PMLR, pp. 387–395.
    [23] Statman, M. How many stocks make a diversified portfolio? Journal of financial
    and quantitative analysis (1987), 353–363.
    [24] Tversky, A., and Kahneman, D. Advances in prospect theory: Cumulative representation
    of uncertainty. Journal of Risk and Uncertainty 5, 4 (Oct 1992), 297–323.
    [25] Willenbrock, S. Diversification return, portfolio rebalancing, and the commodity
    return puzzle. Financial Analysts Journal 67, 4 (2011), 42–49.
    Description: 碩士
    國立政治大學
    資訊科學系碩士在職專班
    108971001
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108971001
    Data Type: thesis
    DOI: 10.6814/NCCU202101177
    Appears in Collections:[Executive Master Program of Computer Science of NCCU] Theses

    Files in This Item:

    File Description SizeFormat
    100101.pdf1793KbAdobe PDF292View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback