Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/137045
|
Title: | ICESat-2於台灣本島地形高程之特性分析 Characteristic Analysis of ICESat-2 Land Elevation in Taiwan |
Authors: | 林美佑 Lin, Mei-Yu |
Contributors: | 林士淵 Lin, Shih-Yuan 林美佑 Lin, Mei-Yu |
Keywords: | ICESat-2 ATL08 衛星測高技術 高程誤差特性 ICESat-2 ATL08 Satellite Altimetry Characteristics of Difference of Elevation |
Date: | 2021 |
Issue Date: | 2021-09-02 17:36:08 (UTC+8) |
Abstract: | 數值地形模型(Digital Elevation Model, DEM)為表達自然地形高程資訊的地理資料,應用層面相當廣泛,產製方式如水準測量、衛星定位系統、航空攝影測量、光達測量,然其皆須前往現地量測並僅適用於中小範圍之測量,對於縣市級、國家級甚至全球性之大範圍測量較不符效益。反之,衛星測高技術則適用於此種大範圍高程測量,其利用衛星搭載儀器對地球高程進行量測,提供多時序、大範圍之高程資訊。 2018年由NASA所發射之ICESat-2即雷射測高衛星,目標提供近年之全球性高程資料(ATL08),可作為除了SRTM、ASTER GDEM、AW3D30等現有之全球性DEM之外的大範圍高程產品,有望於未來作為台灣大範圍高程資料的另一選擇,因而評估其高程於台灣之精度與特性有其必要性。 本研究分析ICESat-2 ATL08地形高程於台灣本島之精度表現,並針對土地覆蓋類別、坡度及海拔高度此三種影響因子分析其高程特性,另以DEM慣於管理及查找之鄉鎮市區單元及基本地形圖比例尺五千分之一圖框為單元,進一步以不同空間單元進行高程分析,最後針對不同影響因子分析其對於ICESat-2 ATL08地形高程之影響趨勢。 研究成果指出高程誤差隨土地覆蓋由無植被變為完全植被覆蓋而增加;坡度與高程誤差具正向關係,誤差增加幅度隨坡度之增加由高增加幅度遞減為低增加幅度,而後又增為高增加幅度,整體誤差趨勢線呈持續上升之現象;海拔高度與高程誤差同具正向關係,然誤差增加幅度隨海拔高度之增加而遞減,且高程誤差趨勢可依趨勢轉折處分為趨勢陡峭與趨勢平緩,各項成果將有助於ICESat-2高程資料日後應用於台灣作為參考。 ICESat-2, a laser altimetry satellite launched by NASA in 2018, aims to provide global elevation data (ATL08) in recent years. In addition to the existing global DEMs, it can be considered as another option for users in Taiwan. To understand the performance of this product, the accuracy of the elevation derived from ICESat-2 ATL08 was firstly evaluated. Then the factors influencing elevation accuracy, including land cover type, slope and altitude, were analyzed based on different spatial units. Compared with the official DEM provided by the Ministry of Interior, the RMSE of elevation error ranges from 2.598 m to 13.009 m. After inspecting the influencing factors, it was indicated that the elevation error increases as the land cover changes from no vegetation to full vegetation coverage. Overall, elevation error increases with slope and elevation. The results are expected to be helpful for the applications of ICESat-2 elevation data in Taiwan as a reference. |
Reference: | 王國隆、林俊廷、張峻瑋、林妍琇、洪志祥、洪政義、邱啓芳、傅桂霖,2019,「結合高精度無人載具測量及差分干涉合成孔徑雷達與NDSI分析於土砂量體的評估方法」,『農業工程學報』,65(4):26-39。 吳仲民,2008,「應用數值航空攝影測量於地形高程變異之評估」,中興大學土木工程學系所碩士論文。 吳繹如,2010,「利用GRACE重力與ICESat測高衛星資料估算南極大陸之冰下地形及地殼厚度」,臺灣大學地質科學研究所碩士論文。 卓芫陞,2015,「應用DEM區塊法探討八掌溪河道變遷」,交通大學土木工程系所碩士論文。 林老生,2012,「e-GPS 水準測量精度研究」,『臺灣土地研究』,15:35-58。 林莉萍、王正楷、曾義星、朱宏杰,2014,「應用空載光達資料估計森林樹冠高度模型及葉面積指數」,『航測及遙測學刊』,19(2):107-123。 邱宜珊,2020,「利用PSInSAR觀察原住民部落之地表形變-以尖石鄉秀巒村為例」,政治大學地政學系所碩士論文。 陳國華,2004,「整合TWVD2001水準及GPS資料改進台灣區域性大地水準面模式以應用於GPS高程測量」,成功大學測量及空間資訊學系所博士論文。 覃美芳,2014,「衛星測高及GPS測高對近岸重力之貢獻」,交通大學土木工程系所碩士論文。 黃紀云,2015,「以20年衛星測高資料研究青藏地區湖水位變化」,交通大學土木工程系所碩士論文。 黃煜婷,2013,「莫拉克風災河道淤塞及變遷-以荖濃溪流域為例」,臺灣師範大學地球科學系所碩士論文。 蕭國鑫、劉進金、何心瑜、楊孟學,2010,「多時影像與DEM資料應用於頭前溪口變遷分析」,『地籍測量:中華民國地籍測量學會會刊』,29(1):1-12。 蕭震洋、林伯勳、鄭錦桐、辜炳寰、徐偉城、冀樹勇,2009,「應用光達技術進行集水區土砂運移監測及攔阻率評估」,『中興工程』,105:17-25。 譚克平,2007,「國中教導盒狀圖的建議及介紹如何用EXCEL製作盒狀圖」,『科學教育月刊』,2(305)。 鐘郁翔,2010,「利用衛星測高波形重定技術進行雲林縣地層下陷評估」,中正大學地震研究所暨應用地球物理研究所碩士論文。
Abdalati, W., Zwally, H. J., Bindschadler, R., Csatho, B., Farrell, S. L., Fricker, H. A., Harding, D., Kwok, R., Lefsky, M. and Markus, T., 2010, "The ICESat-2 laser altimetry mission", Proceedings of the IEEE, 98: 735-751. Aggarwal, C. C., 2015, "Outlier analysis", Data mining. Bolstad, P. V. and Stowe, T., 1994, "An evaluation of DEM accuracy: elevation, slope, and aspect", Photogrammetric Engineering & Remote Sensing, 60: 1327-1332. Brenner, A. C., DiMarzio, J. P. and Zwally, H. J., 2007, "Precision and accuracy of satellite radar and laser altimeter data over the continental ice sheets", IEEE Transactions on Geoscience and Remote Sensing, 45: 321-331. Chen, B., Xu, B., Zhu, Z., Yuan, C., Suen, H. P., Guo, J., Xu, N., Li, W., Zhao, Y. and Yang, J., 2019, "Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017", Sci. Bulletin, 64: 370-373. Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S. and Lu, M., 2015, "Global land cover mapping at 30 m resolution: A POK-based operational approach", ISPRS Journal of Photogrammetry and Remote Sensing, 103: 7-27. Cleveland, W. S., 1979, "Robust locally weighted regression and smoothing scatterplots", Journal of the American statistical association, 74: 829-836. Cleveland, W. S., 1993, Visualizing data, Hobart Press. Cleveland, W. S. and Devlin, S. J., 1988, "Locally weighted regression: an approach to regression analysis by local fitting", Journal of the American statistical association, 83: 596-610. Congalton, R. G., 1991, "A review of assessing the accuracy of classifications of remotely sensed data", Remote Sensing of Environment, 37: 35-46. Dettmering, D., Passaro, M. and Braun, A. (2019). Editorial for Special Issue “Advances in Satellite Altimetry and Its Application”, Multidisciplinary Digital Publishing Institute. El-Mowafi, M., 2005, Leveling By Using Global Positioning System, Unpublished doctoral dissertation, National Research Institute of Astronomy and Geophysics. Falkner, P. and Schulz, R., 2015, "Instrumentation for planetary exploration missions". Gesch, D., Oimoen, M., Zhang, Z., Meyer, D. and Danielson, J., 2012, "Validation of the ASTER global digital elevation model version 2 over the conterminous United States", Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 34: 281-286. Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., Niu, Z., Huang, X., Fu, H. and Liu, S., 2013, "Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data", International journal of remote sensing, 34: 2607-2654. Gopalapillai, S., Mourad, A. and Kuhner, M., 1975, "Satellite altimetry applications to geodesy, oceanography and geophysics", OCEAN 75 Conference. Hu, Z., Peng, J., Hou, Y. and Shan, J., 2017, "Evaluation of recently released open global digital elevation models of Hubei, China", Remote Sensing, 9: 262. Jacoby, W. G., 2000, "Loess: a nonparametric, graphical tool for depicting relationships between variables", Electoral Studies, 19: 577-613. Jarihani, A. A., Callow, J. N., Johansen, K. and Gouweleeuw, B., 2013, "Evaluation of multiple satellite altimetry data for studying inland water bodies and river floods", Journal of Hydrology, 505: 78-90. Kaula, W., 1969, "The terrestrial environment: Solid earth and ocean physics, NASA Rep", Study at Williamstown, MA, NASA CR-1579. Lefsky, M. A., Keller, M., Pang, Y., De Camargo, P. B. and Hunter, M. O., 2007, "Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms", Journal of Applied Remote Sensing, 1: 013537. Liu, Z., Zhu, J., Fu, H., Zhou, C. and Zuo, T., 2020, "Evaluation of the Vertical Accuracy of Open Global DEMs over Steep Terrain Regions Using ICESat Data: A Case Study over Hunan Province, China", Sensors, 20: 4865. Magruder, L. A. and Brunt, K. M., 2018, "Performance analysis of airborne photon-counting lidar data in preparation for the ICESat-2 mission", IEEE Transactions on Geoscience and Remote Sensing, 56: 2911-2918. Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt, K., Csatho, B., Farrell, S., Fricker, H., Gardner, A. and Harding, D., 2017, "The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation", Remote Sensing of Environment, 190: 260-273. Martin, S., 2014, An introduction to ocean remote sensing, Cambridge University Press. McGOOGAN, J. T., 1975, "Satellite altimetry applications", IEEE Transactions on Microwave Theory and Techniques, 23: 970-978. Mukherjee, S., Joshi, P. K., Mukherjee, S., Ghosh, A., Garg, R. and Mukhopadhyay, A., 2013, "Evaluation of vertical accuracy of open source Digital Elevation Model (DEM)", International Journal of Applied Earth Observation and Geoinformation, 21: 205-217. Neuenschwander, A., Guenther, E., White, J. C., Duncanson, L. and Montesano, P., 2020, "Validation of ICESat-2 terrain and canopy heights in boreal forests", Remote Sensing of Environment, 251: 112110. Neuenschwander, A. and Pitts, K., 2019, "The ATL08 land and vegetation product for the ICESat-2 Mission", Remote Sensing of Environment, 221: 247-259. Neuenschwander, A., Popescu, S., Nelson, R., Harding, D., Pitts, K., Robbins, J., Pederson, D. and Sheridan, R., 2019, "Ice, Cloud, and Land Elevation 1 Satellite 2 (ICESat-2) Algorithm Theoretical Basis Document (ATBD) for Land-Vegetation Along-Track Products (ATL08) release 002", National Aeronautics and Space Administration. Goddard Space Flight Centre, Neuenschwander, A. L. and Magruder, L. A., 2016, "The potential impact of vertical sampling uncertainty on ICESat-2/ATLAS terrain and canopy height retrievals for multiple ecosystems", Remote Sensing, 8: 1039. Neuenschwander, A. L. and Magruder, L. A., 2019, "Canopy and terrain height retrievals with ICESat-2: A first look", Remote Sensing, 11: 1721. Neumann, T. A., Martino, A. J., Markus, T., Bae, S., Bock, M. R., Brenner, A. C., Brunt, K. M., Cavanaugh, J., Fernandes, S. T. and Hancock, D. W., 2019, "The Ice, Cloud, and Land Elevation Satellite–2 Mission: A global geolocated photon product derived from the advanced topographic laser altimeter system", Remote Sensing of Environment, 233: 111325. Pakoksung, K. and Takagi, M., 2021, "Assessment and comparison of Digital Elevation Model (DEM) products in varying topographic, land cover regions and its attribute: a case study in Shikoku Island Japan", Modeling Earth Systems and Environment, 7: 465-484. Palm, S., Yang, Y. and Herzfeld, U., 2018, "ICESat-2 Algorithm Theoretical Basis Document for the Atmosphere, Part I: Level 2 and 3 Data Products", National Aeronautics and Space Administration, Goddard Space Flight Center. Popescu, S., Zhou, T., Nelson, R., Neuenschwander, A., Sheridan, R., Narine, L. and Walsh, K., 2018, "Photon counting LiDAR: An adaptive ground and canopy height retrieval algorithm for ICESat-2 data", Remote Sensing of Environment, 208: 154-170. Rinne, E. J., 2011, "Satellite altimeter remote sensing of ice caps". Roscoe, J. T., 1975, Fundamental research statistics for the behavioral sciences [by] John T. Roscoe. Santillan, J. and Makinano-Santillan, M., 2016, "VERTICAL ACCURACY ASSESSMENT OF 30-M RESOLUTION ALOS, ASTER, AND SRTM GLOBAL DEMS OVER NORTHEASTERN MINDANAO, PHILIPPINES", International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 41: Schutz, B. E., Zwally, H. J., Shuman, C. A., Hancock, D. and DiMarzio, J. P., 2005, "Overview of the ICESat mission", Geophysical Research Letters, 32: Seeber, G. (2003). Satellite Geodesy 2nd completely revised and extended edition, Walter de Gruyter GmbH & Co. KG. Seidleck, M., 2018, "The ice, cloud, and land elevation satellite-2—Overview, science, and applications", 2018 IEEE Aerospace Conference. Tukey, J. W., 1977, Exploratory data analysis, Reading, Mass. Varga, M. and Bašić, T., 2015, "Accuracy validation and comparison of global digital elevation models over Croatia", International journal of remote sensing, 36: 170-189. Wang, C., Zhu, X., Nie, S., Xi, X., Li, D., Zheng, W. and Chen, S., 2019, "Ground elevation accuracy verification of ICESat-2 data: a case study in Alaska, USA", Optics Express, 27: 38168-38179. Wang, X., Cheng, X., Gong, P., Huang, H., Li, Z. and Li, X., 2011, "Earth science applications of ICESat/GLAS: a review", International journal of remote sensing, 32: 8837-8864. Wessel, B., Huber, M., Wohlfart, C., Marschalk, U., Kosmann, D. and Roth, A., 2018, "Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data", ISPRS Journal of Photogrammetry and Remote Sensing, 139: 171-182. Xiao, R. and He, X., 2013, "GPS and InSAR time series analysis: Deformation monitoring application in a hydraulic engineering resettlement zone, southwest China", Mathematical problems in engineering, 2013: Xing, Y., Huang, J., Gruen, A. and Qin, L., 2020, "Assessing the Performance of ICESat-2/ATLAS Multi-Channel Photon Data for Estimating Ground Topography in Forested Terrain", Remote Sensing, 12: 2084. Zhou, T., 2017, Advances in Waveform and Photon Counting Lidar Processing for Forest Vegetation Applications, Unpublished doctoral dissertation, Texas A & M University. Zwally, H. J., Schutz, B., Abdalati, W., Abshire, J., Bentley, C., Brenner, A., Bufton, J., Dezio, J., Hancock, D. and Harding, D., 2002, "ICESat`s laser measurements of polar ice, atmosphere, ocean, and land", Journal of Geodynamics, 34: 405-445.
Copernicus Programme (2021) Copernicus Global Land Service from Copernicus Programme on the World Wide Web:https://land.copernicus.eu/global/index.html ICESat/GLAS website (2003) GLAS from ICESat/GLAS website on the World Wide Web:https://www.csr.utexas.edu/glas/ Insights (2021) Satellite Altimetry from Insights on the World Wide Web:https://www.insightsonindia.com/ NASA (2021) ICESat from NASA on the World Wide Web:https://www.nasa.gov/ NASA’s Goddard Space Flight Center (2021) ICESat-2 from NASA’s Goddard Space Flight Center on the World Wide Web:https://www.nasa.gov/goddard NSIDC (2021) ICESat-2 Product Descriptions from NSIDC on the World Wide Web:https://nsidc.org/data/icesat-2/products NSIDC (2021) ICESat-2 ATL08 from NSIDC on the World Wide Web:https://nsidc.org/data/atl08 OpenAltimetry (2021) ICESat-2 ATL08 data from OpenAltimetry on the World Wide Web:https://openaltimetry.org/data/icesat2/ Radar Altimetry Tutorial and Toolbox (2021) Cryosat-2 from Radar Altimetry Tutorial and Toolbox on the World Wide Web:http://www.altimetry.info/ 內政部國土測繪中心 (2021). e-GNSS系統三維坐標轉換服務平台:https://egnss.nlsc.gov.tw/trans/ |
Description: | 碩士 國立政治大學 地政學系 108257029 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0108257029 |
Data Type: | thesis |
DOI: | 10.6814/NCCU202101215 |
Appears in Collections: | [地政學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
702901.pdf | | 5874Kb | Adobe PDF2 | 2 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|