English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114014/145046 (79%)
Visitors : 52054417      Online Users : 402
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/137039


    Title: 高齡者搭乘捷運旅運之時空分布型態分析 –以雙北地區為例
    The analysis of spatial-temporal distribution pattern for the elderly’s MRT travel in Taipei and New Taipei city
    Authors: 潘廷彥
    Pan, Ting-Yen
    Contributors: 白仁德
    Pai, Jen-Te
    潘廷彥
    Pan, Ting-Yen
    Keywords: 高齡者
    大數據
    旅運行為
    多尺度地理加權迴歸
    Elderly
    Big Data
    Travel Behavior
    Multiscale Geographically Weighted Regression
    Date: 2021
    Issue Date: 2021-09-02 17:31:01 (UTC+8)
    Abstract: 我國預計於2026年邁入超高齡社會,面對逐漸增加之高齡人口,凸顯出高齡者之交通運輸問題。而在科技發展之下交通運輸與大數據之連結已變得密不可分,我國衛生福利部也提出運用大數據整合跨域資訊掌握高齡需求,創建對高齡者之友善樂活環境,且提出以TOD等手段,來保障高齡者的交通權益及基本民行需求,以全面提升高齡者生活品質。

    故本研究以搭乘台北捷運之高齡者為研究對象,並藉由捷運大數據資料的分析,探討高齡者在不同時空下之分布,且透過熱點分析,以視覺化的方式呈現高齡者使用捷運的冷熱區分布情形。再者,藉由文獻回顧擷取出影響高齡者旅運行為之因素,並建立一般線性迴歸模型、經典地理加權迴歸及多尺度地理加權迴歸模型,探討各種因素對於高齡者搭乘捷運旅次量之影響,以釐清高齡者使用台北捷運之旅運特性。實證結果顯示,高齡者搭乘捷運時間乘高原狀,且會避開上班族尖峰時間,其使用熱區為中正區、萬華區、大同區。此外,建成環境中可抵達之公共設施數對於高齡者搭乘捷運旅次量具有顯著正向影響。最後,透過多尺度地理加權迴歸可瞭解各捷運站點不同因素影響高齡者搭乘捷運旅次量之程度,希冀以此給予未來政府、系統營運者改善之基準。
    Taiwan officially turned into an elderly society in 2018, and is expected to enter a super-aged society in 2026. In the face of the gradual increase in the elderly population, the transportation problems of the elderly have also been highlighted. To this end, my country responds to the "Friendly Cities for the Elderly" proposed by the World Health Organization, assists county and city governments in reviewing the existing living environment of senior citizens, and proposes improvement plans and suggestions for the deficiencies of the city’s software and hardware, and uses TOD as a means. To protect the transportation rights and basic civilian needs of disadvantaged groups (including the elderly, disabled, children, etc.). In addition, ITDP published the "TOD Standard" version 3.0, which aims to build a people-oriented city and puts forward the principle of inclusiveness, so that people living in cities and suburbs can obtain opportunities and resources in the city. In addition, under the development of science and technology, the connection between transportation and big data has become inseparable. The Ministry of Health and Welfare of my country has also proposed to use big data to integrate cross-domain information to grasp the needs of the elderly, and to create a friendly and happy environment for the elderly to comprehensively improve The health and quality of life of the elderly.
    Therefore, this research takes the elderly who take the Taipei MRT as the research object, and uses the analysis of the MRT big data to explore the distribution of the elderly in different time and space, and through the hot spot analysis, the use of the elderly is presented in a visual way. The distribution of hot and cold areas of the MRT. In addition, through literature review, the factors that affect the travel of the elderly are extracted, and general linear regression models, classical geographically weighted regression and multi-scale geographically weighted regression models are established to explore the influence of various factors on the use of elderly people on the MRT. , In order to clarify the transportation characteristics of the Taipei MRT for the elderly. The empirical results show that elderly people take the MRT time to take the plateau shape and avoid the peak hours of office workers, and the hot spots used by the elderly are Zhongzheng District, Wanhua District, and Datong District. In addition, the number of public facilities that can be reached in the built environment has a significant positive impact on the number of elderly people taking the MRT. Finally, through multi-scale geographic weighted regression, we can understand the significant factors that influence the use of the MRT by the elderly at each MRT station.
    Reference: 壹、 中文部分
    白仁德、劉人華,2015,大眾運輸導向建成環境特性對捷運運量影響之研究-以台北捷運為實證對象,建築與規劃學報,15(2):111–128。
    江繼元,2019,臺北都會區捷運場站運量特性及影響模型之研究,國立政治大學地政學系碩士在職專班碩士論文:1-112。
    呂明心、岳修平,2015,中高齡者使用公共運輸系統自動售票機之可使用性評估研究:以大眾捷運系統為例,圖書資訊學刊,13(2):67-97。
    李家儂,2007,台灣都市形塑大眾運輸導向發展型態之背景與限制,土地問題研究季刊,6(1):65-78。
    李家儂、賴宗裕,2007,台北都會區大眾運輸導向發展目標體系與策略之建構,地理學報,48:19–42。
    李家儂、謝翊楷,2015,以階層線性模式探討TOD規劃效益對土地開發之影響,臺灣土地研究,19(1):1-38。
    周辰,2017,臺灣中南部主要都市地區之國道ETC各車種行車距離與土地使用及生活圈範圍合理性之探討,國立成功大學都市計劃學系碩士論文。
    林禎家,施亭伃,2007,大眾運輸導向發展之建成環境對捷運運量之影響-臺北捷運系統之實證研究,運輸計劃季刊,36(4):451-476。
    林楨家,謝明珊,2008,高齡者需要什麼樣的都市運輸系統?臺北市立浩然敬老院院民之實例分析,建築與規劃學報9(2):101-121。
    紀秉宏,2010,高齡者醫療旅次運具選擇之研究,國立交通大學交通運輸研究所碩士論文:1-104。
    張文菘,2012,桃園地區土地利用變遷與影響因素之空間分析,國立臺灣師範大學地理學系碩士論文:1-121。
    莊畫晴,2017,台北市公共運輸旅運行為之研究,國立政治大學地政學系碩士論文:1-171。
    陳佑伊,2013,高齡者旅運特性與運輸障礙分析,中華大學運輸科技與物流管理學所碩士論文:1-76。
    陳菀蕙、張勝雄,2013,探討高齡化社會之旅運特性與公共運輸資訊需求課題,人文與社會科學簡訊:13(2):141-150。
    馮正民、謝承憲,2010,以運輸多樣性觀點建構都市大眾運輸資源配置模式,運輸學刊,22(4):481-508。
    蔡怡萱、邱靜如、朱宏杰,2019,臺灣各縣市高齡者密度及公車資源之空間分析,臺灣公共衛生雜誌,38(3):252-264。
    賴宗裕,2020,成長管理課程講義,台北:國立政治大學地政學系碩博士班課程講義。
    楊孝博,2014,輕軌運輸誘發需求之探討,成功大學交通管理科學系碩士論文:1-142。

    貳、 英文部分
    Arefeh, N., and Lei, L., 2014, “A multi-dimensional multi-level approach to measuring the spatial structure of U.S. metropolitan areas,” Journal of transport and land use, 11(1):49-65.
    Bruce S. Appleyard, Alexander R. Frost, Christopher Allen, 2019, “Are all transit stations equal and equitable? Calculating sustainability, livability, health, & equity performance of smart growth & transit-oriented-development (TOD)” Journal of Transport & Health, 14:100584.
    Chakraborty A., Mishra S., 2013, “Land use and transit ridership connections: Implications for state-level planning agencies” Land Use Policy, 30:458-469.
    E. Eric Boschmann, Sylvia A. Brady, 2013, “Travel behaviors, sustainable mobility, and transit-oriented developments: a travel counts analysis of older adults in the Denver, Colorado metropolitan area” Journal of Transport Geography, 33:1-11.
    Fengjing Shao, Yi Sui, Xiang Yu, Rencheng Sun, 2019, “Spatio-temporal travel patterns of elderly people – A comparative studybased on buses usage in Qingdao, China” Journal of Transport Geography, 76:178-190.
    Hahn J.S., Kim H.C., Kim J.K., Gudmundur F. Ulfarsson, 2016, “Trip making of older adults in Seoul: Differences in effects of personal and household characteristics by age group and trip purpose.” Journal of Transport Geography, 57:55-62
    Hess, D. B., 2011, “Walking to the bus: perceived versus actual walking distance to bus stops for older adults.” Transportation 39 (2):247-266.
    Hjorthol et al., 2010, “Mobility in different generations of older persons: The development of daily travel in different cohorts in Denmark, Norway and Sweden,” Journal of Transport Geography, 18(5):624-633.
    Ho-Ling Hwang, Daniel Wilson, Tim Reuscher, Jian-Jiang, Yang Rob, Taylor ShihMiao Chin, 2015. “Travel Patterns and characteristics of the elderly subpopulation in New York State”, New York State Department of Transportation.
    Huang, L. and Tsai, H.T., 2003, “The study of senior traveler behavior in Taiwan.” Tourism Management, 24:561-574.
    Johanna Meurer , Martin Stein , David Randall , Volker Wulf , 2018 “Designing for way-finding as practices – A study of elderly people’s mobility” Int. J. Human-Computer Studies,115:40–51
    K. Bruce Newbold, Darren M. Scott, Jamie E.L. Spinney, Pavlos Kanaroglou, Antonio Pa´ez, 2005 “Travel behavior within Canada’s older population: a cohort analysis” Journal of Transport Geography,13:340–351
    Kim, S., 2003 “Analysis of Elderly Mobility by Structural Equation Modeling,” Transportation Research Record, 1854, 81-89.
    Lars Bocker, Patrick van Amen, Marco Helbich, 2017 “Elderly travel frequencies and transport mode choices in Greater Rotterdam, the Netherlands” Transportation, 44:831–852.
    Laurie Buys, Stephen Snow, Kimberley van, Evonne Miller, 2012, “Transportation behaviours of older adults: An investigation into car dependency in urban Australia” Australasian Journal on Ageing, 31(3):181-186
    Long C., Jonas D.V., Kunbo S., Min Y., Xuewu C., Frank W., 2019, “Do residential location effects on travel behavior differ between the elderly and younger adults?” Transportation Research Part D, 73:367–380.
    Long, Y., Liu, X., Zhou, J., & Chai, Y., 2016, “Early birds, night owls, and tireless/recurring itinerants: An exploratory analysis of extreme transit behaviors in Beijing, China”. Habitat International, 57, 223–232.
    Milne, D., Watling, D., 2019, “Big data and understanding change in the context of planning transport systems” Journal of Transport Geography, 76:235-244.
    Olusiyi Ipingbemi, 2010, “Travel characteristics and mobility constraints of the elderly in Ibadan, Nigeria.” Journal of Transport Geography, 18:285-291.
    Oscar Egu, Patrick Bonnel, 2020, “Investigating day-to-day variability of transit usage on a multimonth scalewith smart card data. A case study in Lyon” Travel Behaviour and Society, 19:112-123.
    P.P. Koh, B.W. Leow, Y.D. Wong, 2015, “Mobility of the elderly in densely populated neighbourhoods in Singapore.” Sustainable Cities and Society, 14:126-132.
    Pan, H., Li J., Shen, Q., Shi, C., 2017, “What determines rail transit passenger volume? Implications for transit oriented development planning.” Transportation Research Part D, 57:52-63.
    Peraphan Jittrapirom, Wouter van Neerven, Karel Martens, Debra Tramped, Henk Meurs, 2019, “The Dutch elderly`s preferences toward a smart demand-responsive transport service.” Research in Transportation Business & Management, 30: 100383.
    Quentin Lamour, Adriano M. Morelli, Karin R. de C. Marins, 2019, “Improving walkability in a TOD context: Spatial strategies that enhance walking in the Belém neighbourhood, in São Paulo, Brazil” Case Studies on Transport Policy, 7:280-292.
    R.C.P. Wong, W.Y. Szeto , Linchuan Yang, Y.C. Li, S.C. Wong, 2018 “Public transport policy measures for improving elderly mobility” Transport Policy, 63:73–79.
    Renato Arbex, Claudio B. Cunha, 2020, “Estimating the influence of crowding and travel time variability on accessibility to jobs in a large public transport network using smart card big data” Journal of Transport Geography. 85:102671.
    Shaoying Li, Dijiang Lyu, Guanping Huang, Xiaohu Zhang, Feng Gao, Yuting Chen, Xiaoping Liu, 2020, “Spatially varying impacts of built environment factors on rail transit ridership at station level: A case study in Guangzhou, China” Journal of Transport Geography, 82:102631.
    Shen S., Koech W., Feng J., Rice T., Zhu M., 2017, “A cross-sectional study of travel patterns of older adults in the USA during 2015: implications for mobility and traffic safety” BMJ Open, 7:e015780. doi:10.1136/
    Siebenhandl, K., Schreder, G., Smuc, M., Mayr, zE., & Nagl, M., 2013, “A user centered design approach to self-service ticket vending machines”.IEEE Transactions of Professional Communication, 56(2), 138-159.
    Sihui Guo, Ci Song, Tao Pei, Yaxi Liu, Ting Ma, Yunyan Du, Jie Chen, Zide Fan, Xianli Tang, Yong Peng, Yanbin Wang, 2019, “Accessibility to urban parks for elderly residents: Perspectives from mobile phone data” Landscape and Urban Planning, 191: 103642
    Su and Bell., 2012, “Travel differences by gender for older people in London,” Research in Transportation Economics, 34(2012):35-38
    Sui Tao, Jonathan Corcoran, Iderlina Mateo-Babiano, David Rohde, 2014 “Exploring Bus Rapid Transit passenger travel behaviour using big data” Applied Geography 53:90-104.
    Sumit Agarwal , Mi Diao , Jussi Keppo , Tien Foo Sing, 2020, “Preferences of Public Transit Commuters: Evidence from Smart Card Data in Singapore” Journal of Urban Economics, Volume 120,103288
    Timothy F. Welch, Alyas Widita, 2019 “Big data in public transportation: a review of sources and methods” Transport Reviews, 39: 795–818.
    Truong L.T., 2015, “Exploring frequency of public transport use among older adults: A study in Adelaide, Australia” Travel Behaviour and Society, 2:148–155.
    Wu. Shuen-Cheng, 2005, “Exploring the mode choice in daily travel behavior of the elderly in Taiwan” Journal of the Eastern Asia Society for Transportation Studies, 6:1818-1832.
    Xiaowei Hu , Jia Wang ,Lei Wang,2013 “Understanding the Travel Behavior of Elderly People in the Developing Country: A Case Study of Changchun, China” Procedia - Social and Behavioral Sciences, 96, 873 – 880
    Yong Y., Xub Y., Rodriguezc A., Michaeld Y., Zhang H., 2018, “Active travel, public transportation use, and daily transport among older adults: The association of built environment” Journal of Transport, 9:288-298
    Yongsheng Zhang, Enjian Yao, Rui Zhang, Hao Xu, 2019 “Analysis of elderly people`s travel behaviours during the morning peak hours in the context of the free bus programme in Beijing, China” Journal of Transport Geography, 76:191-199.
    Gan Z., Yang M., Feng T., Timmermans. H. J., 2020, “Examining the relationship between built environment and metro ridership at station-to-station level” Transportation Research Part D: Transport and Environment, 82:102332.

    參、 網站資料
    中華民國國民健康暑,網址:http://afc.hpa.gov.tw/Page/base/result.aspx,查詢日期:2020.07.05。
    中華民國內政部統計通報,網址
    https://www.moi.gov.tw/stat/node.aspx?cate_sn=&belong_sn=5120&sn=8773,查詢日期:2020.07.05
    Description: 碩士
    國立政治大學
    地政學系
    108257011
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108257011
    Data Type: thesis
    DOI: 10.6814/NCCU202101382
    Appears in Collections:[地政學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    701101.pdf4633KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback