English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51832588      Online Users : 533
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/136969
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/136969


    Title: 基於非監督域適應之衛星圖資切割優化
    Segmentation of Remote Sensing Images Using Unsupervised Domain Adaptation
    Authors: 王柏仁
    Wang, Bor-Ren
    Contributors: 廖文宏
    Liao, Wen-Hung
    王柏仁
    Wang, Bor-Ren
    Keywords: 深度學習
    衛星影像
    影像切割
    對抗式生成網路
    風格轉換
    非監督域適應
    Deep learning
    Remote sensing images
    Image segmentation
    Generative adversarial network(GAN)
    Style transfer
    Unsupervised domain adaptation
    Date: 2021
    Issue Date: 2021-09-02 16:56:56 (UTC+8)
    Abstract: 在國防領域中,衛星圖資因其高海拔尺度、獨特的視角以及廣大覆蓋率的特性扮演了重要的角色,同時也被應用在各種情境中,包括農作物預測、土地調查等繪圖應用。而在本論文中,我們使用深度學習框架於「影像切割與色彩調配」任務,其中前者目的在於準確地對衛星影像中的每個像素進行不同分類的預測;後者旨在開發相關技術以穩健地在具不均勻分布的不同來源影像中進行影像切割。

    深度學習本質上是資料驅動的,十分仰賴訓練資料的數量以及品質,且訓練好的模型往往無法泛化到其他資料上,而這也是應用在衛星圖資分析常常會被觀察到的現象。針對此一議題,我們採用了非監督域適應(UDA) 技術,嘗試在不同來源資料中轉移域知識,進而讓模型具更強能力來處理異質性資料。對此,我們首先研究及實驗目前現有的Source-Only模型以及 UDA 演算法,並獲得綜合性的結果。接著我們進一步提出創新的模型架構,稱為域轉換與強化網路(Domain Transfer and Enhancement Network, DTEN),當中包含Skip Connection、Mixed Pooling Module以及域轉換模組,並實驗中達到46.4% MIOU,超越當今SOTA約3% 的成績。
    Satellite imagery plays an important role in national defense due to its high attitude, unique view point and large coverage. It has also been utilized in areas such as crop prediction, land surveying as mapping. In this thesis, we focus on the task of image segmentation and color matching using deep learning framework. The former is concerned with accurate classification of pixels in satellite images into different categories, and the latter is to develop techniques to perform robust semantic segmentation when satellite images are obtained from different sources, causing non-uniformity in color distribution.

    Deep neural network is inherently data-driven, relying heavily on the quantity and quality of the training data. Models trained on one dataset might not generalize well to the other, which is often observed in the analysis of satellite images. To address the above issue, we employ unsupervised domain adaptation (UDA) techniques to transfer domain knowledge between different sources of satellite images, hoping to strengthen the model’s ability to cope with heterogeneous data. We start by experimenting with existing UDA algorithms and performing comparative analysis. We then propose a novel architecture named domain transfer and enhancement network(DTEN) which incorporates skip connection, mixed pooling module and domain transfer module, and design some ablation studies. The resulting model supersedes the state-of-the-art methods in satellite image segmentation, achieving a highest MIOU of 46.4%, an improvement of nearly 3% over existing approaches.
    Reference: [1]. Zhang, Liangpei, Lefei Zhang, and Bo Du. "Deep learning for remote sensing data: A technical tutorial on the state of the art." IEEE Geoscience and Remote Sensing Magazine 4.2 (2016): 22-40.
    [2]. Z. Chen, J. Zhuang, X. Liang and L. Lin, "Blending-Target Domain Adaptation by Adversarial Meta-Adaptation Networks," 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 2243-2252, doi: 10.1109/CVPR.2019.00235.
    [3]. Goodfellow, Ian & Pouget-Abadie, Jean & Mirza, Mehdi & Xu, Bing & Warde-Farley, David & Ozair, Sherjil & Courville, Aaron & Bengio, Y.. (2014). Generative Adversarial Nets. ArXiv.
    [4]. Zhu, Jun-Yan & Park, Taesung & Isola, Phillip & Efros, Alexei. (2017). Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. 2242-2251. 10.1109/ICCV.2017.244.
    [5]. Li, Hanchao & Xiong, Pengfei & An, Jie & Wang, Lingxue. (2018). Pyramid Attention Network for Semantic Segmentation.
    [6]. Zhang, Hang & Dana, Kristin & Shi, Jianping & Zhang, Zhongyue & Wang, Xiaogang & Tyagi, Ambrish & Agrawal, Amit. (2018). Context Encoding for Semantic Segmentation. 7151-7160. 10.1109/CVPR.2018.00747.
    [7]. Fu, Jun & Liu, Jing & Tian, Haijie & Li, Yong & Bao, Yongjun & Fang, Zhiwei & Lu, Hanqing. (2019). Dual Attention Network for Scene Segmentation. 3141-3149. 10.1109/CVPR.2019.00326.
    [8]. Fu, Jun & Liu, Jing & Jiang, Jie & Li, Yong & Bao, Yongjun & Lu, Hanqing. (2020). Scene Segmentation With Dual Relation-Aware Attention Network. IEEE Transactions on Neural Networks and Learning Systems. PP. 1-14. 10.1109/TNNLS.2020.3006524.
    [9]. Q. Hou, L. Zhang, M. -M. Cheng and J. Feng, "Strip Pooling: Rethinking Spatial Pooling for Scene Parsing," 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 4002-4011, doi:10.1109/CVPR42600.2020.00406.
    [10]. Chen, Liang-Chieh & Papandreou, George & Kokkinos, Iasonas & Murphy, Kevin & Yuille, Alan. (2016). DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence. PP. 10.1109/TPAMI.2017.2699184.
    [11]. Chen, Liang-Chieh & Zhu, Yukun & Papandreou, George & Schroff, Florian & Adam, Hartwig. (2018). Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation.
    [12]. https://towardsdatascience.com/deep-domain-adaptation-in-computer-vision-8da398d3167f
    [13]. Rozantsev, Artem & Salzmann, Mathieu & Fua, Pascal. (2016). Beyond Sharing Weights for Deep Domain Adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence. PP. 10.1109/TPAMI.2018.2814042.
    [14]. Sun, Baochen & Saenko, Kate. (2016). Deep CORAL: Correlation Alignment for Deep Domain Adaptation. 10.1007/978-3-319-49409-8_35.
    [15]. Kang, Guoliang & Jiang, Lu & Yang, Yi & Hauptmann, Alexander. (2019). Contrastive Adaptation Network for Unsupervised Domain Adaptation. 4888-4897. 10.1109/CVPR.2019.00503.
    [16]. Ganin, Yaroslav & Lempitsky, Victor. (2014). Unsupervised Domain Adaptation by Backpropagation.
    [17]. Ghifary, Muhammad & Kleijn, W. & Zhang, Mengjie & Balduzzi, David & Li, Wen. (2016). Deep Reconstruction-Classification Networks for Unsupervised Domain Adaptation. 9908. 597-613. 10.1007/978-3-319-46493-0_36.
    [18]. Hoffman, Judy & Tzeng, Eric & Park, Taesung & Zhu, Jun-Yan & Isola, Phillip & Saenko, Kate & Efros, Alexei & Darrell, Trevor. (2017). CyCADA: Cycle-Consistent Adversarial Domain Adaptation.
    [19]. Tsai, Yi-Hsuan & Hung, Wei-Chih & Schulter, Samuel & Sohn, Kihyuk & Yang, Ming-Hsuan & Chandraker, Manmohan. (2018). Learning to Adapt Structured Output Space for Semantic Segmentation. 7472-7481. 10.1109/CVPR.2018.00780.
    [20]. Yang, Yanchao & Soatto, Stefano. (2020). FDA: Fourier Domain Adaptation for Semantic Segmentation. 4084-4094. 10.1109/CVPR42600.2020.00414.
    [21]. Vu, Tuan-Hung & Jain, Himalaya & Bucher, Maxime & Cord, Matthieu & Perez, Patrick. (2019). ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation. 2512-2521. 10.1109/CVPR.2019.00262.
    [22]. Vu, Tuan-Hung & Jain, Himalaya & Bucher, Maxime & Cord, Matthieu & Perez, Patrick. (2019). DADA: Depth-Aware Domain Adaptation in Semantic Segmentation. 7363-7372. 10.1109/ICCV.2019.00746.
    [23]. Y. Li, L. Yuan and N. Vasconcelos, "Bidirectional Learning for Domain Adaptation of Semantic Segmentation," 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 6929-6938, doi: 10.1109/CVPR.2019.00710.
    [24]. P. Isola, J. Zhu, T. Zhou and A. A. Efros, "Image-to-Image Translation with Conditional Adversarial Networks," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017, pp. 5967-5976, doi: 10.1109/CVPR.2017.632.
    [25]. Y. Chen, Y. Lin, M. Yang and J. Huang, "CrDoCo: Pixel-Level Domain Transfer With Cross-Domain Consistency," 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 1791-1800, doi: 10.1109/CVPR.2019.00189.
    [26]. Wang, Zhonghao & Yu, Mo & Wei, Yunchao & Feris, Rogerio & Xiong, Jinjun & Hwu, Wen-mei & Shi, Humphrey. (2020). Differential Treatment for Stuff and Things: A Simple Unsupervised Domain Adaptation Method for Semantic Segmentation. 12632-12641. 10.1109/CVPR42600.2020.01265.
    [27]. Jin, Xin & Lan, Cuiling & Zeng, Wenjun & Chen, Zhibo. (2021). Style Normalization and Restitution for DomainGeneralization and Adaptation.
    [28]. Wang, Jing & Chen, Jiahong & Lin, Jianzhe & Sigal, Leonid & Silva, Clarence. (2021). Discriminative Feature Alignment: Improving Transferability of Unsupervised Domain Adaptation by Gaussian-guided Latent Alignment.. Pattern Recognition. 116. 107943. 10.1016/j.patcog.2021.107943.
    [29]. Zhang, Pan & Zhang, Bo & Zhang, Ting & Chen, Dong & Wang, Yong & Wen, Fang. (2021). Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation.
    [30]. Snell, Jake & Swersky, Kevin & Zemel, Richard. (2017). Prototypical Networks for Few-shot Learning.
    [31]. Kang, Yuhao & Gao, Song & Roth, Robert. (2019). Transferring Multiscale Map Styles Using Generative Adversarial Networks. International Journal of Cartography. 10.1080/23729333.2019.1615729.
    [32]. Tasar, Onur & Tarabalka, Yuliya & Giros, Alain & Alliez, Pierre & Clerc, Sebastien. (2020). StandardGAN: Multi-source Domain Adaptation for Semantic Segmentation of Very High Resolution Satellite Images by Data Standardization. 747-756. 10.1109/CVPRW50498.2020.00104.
    [33]. Huang, Xun & Belongie, Serge. (2017). Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization. 1510-1519. 10.1109/ICCV.2017.167.
    [34]. Park, Taesung & Liu, Ming-Yu & Wang, Ting-Chun & Zhu, Jun-Yan. (2019). Semantic Image Synthesis With Spatially-Adaptive Normalization. 2332-2341. 10.1109/CVPR.2019.00244.
    [35]. Park, Dae & Lee, Kwang. (2019). Arbitrary Style Transfer With Style-Attentional Networks. 5873-5881. 10.1109/CVPR.2019.00603.
    [36]. Chang, Woong-Gi & You, Tackgeun & Seo, Seonguk & Kwak, Suha & Han, Bohyung. (2019). Domain-Specific Batch Normalization for Unsupervised Domain Adaptation. 7346-7354. 10.1109/CVPR.2019.00753.
    [37]. Jonathan Howe, May Casterline and Abel Brown.(2018). Solving SpaceNet Road Detection Challenge With Deep Learning, https://developer.nvidia.com/blog/solving-spacenet-road-detection-challenge-deep- learning/
    [38]. Ronneberger, Olaf, Fischer, Philipp and Brox, Thomas. "U-Net: Convolutional Networks for Biomedical Image Segmentation." Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 (2015): .
    [39]. Pleiss, Geoff, Chen, Danlu, Huang, Gao, Li, Tongcheng, van der Maaten, Laurens and Weinberger, Kilian Q. Memory-Efficient Implementation of DenseNets. (2017). , cite arxiv:1707.06990Comment: Technical report
    [40]. https://en.wikipedia.org/wiki/Flood_fill
    [41]. https://en.wikipedia.org/wiki/WorldView-3
    [42]. https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection/data
    [43]. https://en.wikipedia.org/wiki/QuickBird
    [44]. https://sites.google.com/site/michelevolpiresearch/data/zurich-dataset
    [45]. https://en.wikipedia.org/wiki/Pansharpened_image
    [46]. https://en.wikipedia.org/wiki/Landsat_8
    [47]. https://zenodo.org/record/1154821#.X5ocGkIzblx
    [48]. https://en.wikipedia.org/wiki/Sentinel-2
    [49]. https://mediatum.ub.tum.de/1474000
    [50]. Chollet, Francois. (2017). Xception: Deep Learning with Depthwise Separable Convolutions. 1800-1807. 10.1109/CVPR.2017.195.
    [51]. K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770-778, doi: 10.1109/CVPR.2016.90.
    [52]. Zhang, Richard & Isola, Phillip & Efros, Alexei & Shechtman, Eli & Wang, Oliver. (2018). The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. 586-595. 10.1109/CVPR.2018.00068.
    [53]. Zisserman, Andrew. (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 1409.1556.
    [54]. Krizhevsky, Alex & Sutskever, Ilya & Hinton, Geoffrey. (2012). ImageNet Classification with Deep Convolutional Neural Networks. Neural Information Processing Systems. 25. 10.1145/3065386.
    [55]. http://www.image-net.org
    [56]. https://en.wikipedia.org/wiki/Histogram_equalizationc
    [57]. https://en.wikipedia.org/wiki/Adaptive_histogram_equalization
    [58]. Chen, Liang-Chieh & Papandreou, George & Schroff, Florian & Adam, Hartwig. (2017). Rethinking Atrous Convolution for Semantic Image Segmentation.
    [59]. https://en.wikipedia.org/wiki/Entropy_(information_theory)
    [60]. Xie, Saining & Girshick, Ross & Dollár, Piotr & Tu, Z. & He, Kaiming. (2016). Aggregated Residual Transformations for Deep Neural Networks.
    [61]. https://github.com/facebookresearch
    [62]. https://github.com/facebookresearch/detectron2/blob/master/MODEL_ZOO.md
    [63]. https://cocodataset.org/#home
    [64]. https://paperswithcode.com/sota/synthetic-to-real-translation-on-gtav-to
    [65]. https://paperswithcode.com/sota/image-to-image-translation-on-synthia-to
    Description: 碩士
    國立政治大學
    資訊科學系
    108753204
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108753204
    Data Type: thesis
    DOI: 10.6814/NCCU202101250
    Appears in Collections:[資訊科學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    320401.pdf14945KbAdobe PDF228View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback