English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51675323      Online Users : 654
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/136924


    Title: 具主題式文本摘要萃取之線上討論工具發展與應用研究
    A Topic Modeling Scheme with Abstract Extraction to Facilitate Asynchronous Online Discussion Performance
    Authors: 陳冠霖
    Chen, Kuan-Lin
    Contributors: 陳志銘
    Chen, Chih-Ming
    陳冠霖
    Chen, Kuan-Lin
    Keywords: 線上討論
    隱含狄利克雷分布主題模型
    BM25
    自動摘要
    社會性科學議題
    學習行為歷程
    科技接受度
    Online Discussion
    Latent Dirichlet Allocation
    BM25
    Automatic Summarization
    Socio-Scientific Issues
    Learning Behavior
    Technology Acceptance Model
    Date: 2021
    Issue Date: 2021-09-02 16:35:28 (UTC+8)
    Abstract: 為了解決線上討論中學習者常常需要耗費大量時間對討論內容進行理解,以及討論內容經處理分析後常出現資訊過於抽象、解釋性不足,因而導致影響學習者討論學習成效的問題,本研究採用文本探勘技術中的LDA (Latent Dirichlet Allocation)主題分析模型及摘要抽取技術,發展具摘要萃取之主題分析即時回饋系統(Topic Analysis Instant Feedback System with Abstract Extraction, TAIFS-AE),改善Chen, Li, Chang 與 Chen (2021)所提出的主題分析即時回饋系統(Topic Analysis Instant Feedback System, TAIFS),以降低TAIFS 採用LDA主題分析模型,並以幾個關鍵字代表所分析主題,仍難以讓學習者清楚解讀主題意涵的問題,以幫助學習者能更精確掌握整體討論的概要,以及議題討論的面向。
    本實驗採真實驗研究法,透過網路招募各大專院校學生共29人為研究對象,將其中14位學生隨機分派為使用TAIFS-AE(提供主題摘要列表)輔以線上討論的實驗組,另外15位學生則分派為使用TAIFS(提供主題關鍵字)的控制組,進行「新冠肺炎防疫應變」之社會性科學議題(Socio-Scientific Issues, SSI)線上討論。以探討兩組學習者在討論學習成效與科技接受度上是否具有顯著的差異,並且以先備知識作為背景變項,探討不同先備知識之學習者,在學習成效與科技接受度上是否具有顯著差異。此外,也透過滯後序列分析(Lag Sequential Analysis,LSA)探討實驗組學習者之有效行為模式。
    研究結果發現,使用TAIFS-AE與使用TAIFS的學習者在討論學習成效上沒有顯著的差異,而兩組學習者在科技接受度上亦無顯著的差異,但是兩組學習者的科技接受度均高於中位數,顯示其科技接受度良好。本研究進一步透過行為歷程分析的結果發現,採用TAIFS-AE學習者在摘要句點擊次數與整體學習成效以及多元觀點之分數具有顯著正相關。此外,在使用TAIFS-AE輔助線上討論的組別中,點擊摘要列表功能次數較多的學習者在討論學習成效中的總分及多元觀點面向上顯著優於較少點擊摘要列表功能的學習者,代表若學習者能充分運用TAIFS-AE中的主題摘要列表功能來輔助討論活動,則TAIFS-AE將能有效促進學習者進行線上討論時的表現。
    基於研究結果,本研究提出TAIFS-AE教學與系統改善建議以及未來能夠延伸的研究方向。整體而言,本研究將討論區學習、自然語言處理與資料視覺化等技術進行整合所發展之TAIFS-AE,提供科技輔助線上討論之創新有效學習工具,對於促進數位學習之線上討論具有貢獻。
    In online discussions, learners usually need to spend a lot of time to understand the content of the discussion, resulting in low learning effectiveness. Although the previous research has developed a Topic Analysis Instant Feedback System (TAIFS) (Chen, Li, Chang & Chen, 2021) that uses several keywords to represent the topic of discussion to solve this problem, it is still difficult for learners to comprehend the discussion content. Therefore, this study uses the topic model and abstract extraction technology of LDA (Latent Dirichlet Allocation) to develop Topic Analysis Instant Feedback System with Abstract Extraction (TAIFS-AE), try to decrease the time that learners need to spend to understand the discussion content in online discussions and support learners to comprehend the aspects of the overall discussion easier.
    This experiment adopts the true-experimental design and recruits 29 college students through the internet as research objects, 14 of them are randomly assigned to the experimental group using TAIFS-AE supplemented by online discussion, the other 15 students are assigned to the control group using TAIFS supplemented by online discussion to conduct a discussion on the topic of COVID-19, explore whether there are significant differences between the two groups of learning effectiveness and technological acceptance. Furthermore, use prior knowledge as a background variable to explore whether learners with different prior knowledge have significant differences in learning effectiveness and technological acceptance. In addition, this research uses Lag Sequential Analysis (LSA) to explore the behavior patterns of learners in the experimental group.
    The results of the study found that there was no significant difference between the learners who used TAIFS-AE and the learners who used TAIFS of learning effectiveness and technological acceptance. However, the technological acceptances of the two groups are higher than the median grade of the questionnaire, indicating that they have positive attitude toward technological acceptance. Moreover, this study found the results of learners’ operation record that the number of clicks on summary list function by TAIFS-AE has a significant positive correlation with the learning effectiveness of overall score and scores of perspectives.
    In addition, the group that uses the TAIFS-AE to assist online discussion, learners who clicked on the summary list function more often had the significantly better overall score and scores of perspectives in the discussion of learning effectiveness than those who clicked on the summary list function less. Which means that if learners can make full use of the topic summary list function in TAIFS-AE to assist the discussion activities, then TAIFS-AE will promote learners’ performance in online discussions.
    Based on the results, this research puts forward suggestions for the improvement of TAIFS-AE, as well as research directions that can be extended in the future. This research integrates online discussion, natural language processing, and data visualization technology to develop TAIFS-AE, and provides innovative and effective learning tools that assist online discussion with technology and contributes to the promotion of online discussions in digital learning.
    Reference: AbuSeileek, A. F. (2012). The effect of computer-assisted cooperative learning methods and group size on the EFL learners’ achievement in communication skills. Computers & Education, 58(1), 231-239.
    Adetimirin, A. (2015). An empirical study of online discussion forums by library and information science postgraduate students using technology acceptance model 3. Journal of Information Technology Education: Research, 14(1), 257-269.
    Anderson, J. R. (1996). ACT: A simple theory of complex cognition. American psychologist, 51(4), 355.
    Atapattu, T., Falkner, K., & Tarmazdi, H. (2016). Topic-Wise Classification of MOOC Discussions: A Visual Analytics Approach. International Educational Data Mining Society.
    Bates, A. T. (2005). Technology, e-learning and distance education. Routledge.
    Belcher, D. D. (1999). Authentic interaction in a virtual classroom: leveling the playing field in a graduate seminar1. Computers and Composition, 16(2), 253-267.
    Bizer, C., Heath, T., & Berners-Lee, T. (2011). Linked data: The story so far. In Semantic services, interoperability and web applications: emerging concepts (pp. 205-227). IGI global.
    Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. the Journal of machine Learning research, 3, 993-1022.
    Boyles, N., & Scherer, M. (2012). Closing in on close reading. On Developing Readers: Readings from Educational Leadership, EL Essentials, 89-99..
    Card, K. A., & Horton, L. (2000). Providing access to graduate education using computer-mediated communication. International journal of instructional media, 27(3), 235.
    Caris, M. I. E. K. E., Ferguson, D., & Gordon, G. (2002). Teaching over the web versus in the classroom: Differences in the instructor experience. International Journal of Instructional Media, 29(1), 61-67.
    Chen, C. M., & Tsao, H. W. (2021). An instant perspective comparison system to facilitate learners’ discussion effectiveness in an online discussion process. Computers & Education, 164, 104037.
    Chen, C. M., Li, M. C., & Huang, Y. L. (2020). Developing an instant semantic analysis and feedback system to facilitate learning performance of online discussion. Interactive Learning Environments, 1-19..
    Chen, C. M., Li, M. C., Chang, W. C., & Chen, X. X. (2021). Developing a Topic Analysis Instant Feedback System to facilitate asynchronous online discussion effectiveness. Computers & Education, 163, 104095.
    Chung, G. K., & Baker, E. L. (2003). An exploratory study to examine the feasibility of measuring problem-solving processes using a click-through interface. The Journal of Technology, Learning and Assessment, 2(2).
    Colucci‐Gray, L., Camino, E., Barbiero, G., & Gray, D. (2006). From scientific literacy to sustainability literacy: An ecological framework for education. Science Education, 90(2), 227-252.
    DeBoer, G. E. (2000). Scientific literacy: Another look at its historical and contemporary meanings and its relationship to science education reform. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 37(6), 582-601.
    Driver, R., Asoko, H., Leach, J., Scott, P., & Mortimer, E. (1994). Constructing scientific knowledge in the classroom. Educational researcher, 23(7), 5-12.
    Ellis, R. A., & Calvo, R. A. (2004). Learning through discussions in blended environments. Educational media international, 41(3), 263-274.
    Ezen-Can, A., Boyer, K. E., Kellogg, S., & Booth, S. (2015, March). Unsupervised modeling for understanding MOOC discussion forums: a learning analytics approach. In Proceedings of the fifth international conference on learning analytics and knowledge (pp. 146-150).
    Gunawardena, C. N., Lowe, C. A., & Anderson, T. (1997). Analysis of a global online debate and the development of an interaction analysis model for examining social construction of knowledge in computer conferencing. Journal of educational computing research, 17(4), 397-431.
    Haavind, S., & Tinker, R. (2001). FACll.. lTATlNG ONLINE LEARNING.. EFFECTIVE STRATEGIES FOR MODERATORS. Quarterly Review of Distance Education, 2(4), 397-401.
    Hahn, C. L. (1996). Research on issues-centered social studies. Handbook on teaching social issues, 25-41.
    Hara, N., Bonk, C. J., & Angeli, C. (2000). Content analysis of online discussion in an applied educational psychology course. Instructional science, 28(2), 115-152.
    Harasim, L. M. (1990). Online education: Perspectives on a new environment. Greenwood Publishing Group Inc.
    Harrington, H. (1992). Fostering critical reflection through technology: Preparing prospective teachers for a changing society. Journal of Information Technology for Teacher Education, 1(1), 67-82.
    Hiltz, S. R. (1994). The virtual classroom: Learning without limits via computer networks. Intellect Books.
    Hirumi, A., & Bermudez, A. (1996). Interactivity, distance education, and instructional systems design converge on the information superhighway. Journal of research on computing in education, 29(1), 1-16.
    Hung, D., Tan, S. C., & Der-Thanq, C. (2005). How the Internet facilitates learning as dialog: Design considerations for online discussions. International Journal of Instructional Media, 32(1), 37.
    Jacob, S., & Radhai, S. (2016). Trends in ICT e-learning: Challenges and expectations. International Journal of Innovative Research and Development, 5(2Sp), 196-201.
    Jänicke, S., Franzini, G., Cheema, M. F., & Scheuermann, G. (2017, September). Visual text analysis in digital humanities. In Computer Graphics Forum (Vol. 36, No. 6, pp. 226-250).
    Jeong, A. C. (2003). The sequential analysis of group interaction and critical thinking in online. The American Journal of Distance Education, 17(1), 25-43.
    Jia, H., & Liu, X. (2013). Scientific referential metadata creation with information retrieval and labeled topic modeling.
    Kern, R. G. (1995). Restructuring classroom interaction with networked computers: Effects on quantity and characteristics of language production. The Modern language journal, 79(4), 457-476.
    King, K. P. (2001). Educators revitalize the classroom “bulletin board” a case study of the influence of online dialogue on face-to-face classes from an adult learning perspective. Journal of research on computing in education, 33(4), 337-354.
    Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., & Dyer, C. (2016). Neural architectures for named entity recognition. arXiv preprint arXiv:1603.01360.
    Levinson, R. (2006). Towards a theoretical framework for teaching controversial socio‐scientific issues. International Journal of Science Education, 28(10), 1201-1224.
    Lewis, J., & Leach, J. (2006). Discussion of socio‐scientific issues: The role of science knowledge. International Journal of Science Education, 28(11), 1267-1287.
    Lim, C. P., & Chai, C. S. (2004). An activity-theoretical approach to research of ICT integration in Singapore schools: Orienting activities and learner autonomy. Computers & Education, 43(3), 215-236.
    Lin, C. Y., & Hovy, E. (2002, July). From single to multi-document summarization. In Proceedings of the 40th annual meeting of the association for computational linguistics (pp. 457-464).
    Lyons, T., & Evans, M. M. (2013). Blended learning to increase student satisfaction: an exploratory study. Internet reference services quarterly, 18(1), 43-53.
    MacKnight, C. B. (2000). Teaching critical thinking through online discussions. Educause Quarterly, 23(4), 38-41.
    MacKnight, C. B. (2000). Teaching critical thinking through online discussions. Educause Quarterly, 23(4), 38-41.
    Marra, R. M., Moore, J. L., & Klimczak, A. K. (2004). Content analysis of online discussion forums: A comparative analysis of protocols. Educational Technology Research and Development, 52(2), 23.
    Meyer, K. A. (2004). Evaluating online discussions: Four different frames of analysis. Journal of Asynchronous Learning Networks, 8(2), 101-114.
    Ming, N., & Baumer, E. (2011). Using Text Mining to Characterize Online Discussion Facilitation. Journal of Asynchronous Learning Networks, 15(2), 71-109..
    Moallem, M. (2003). An interactive online course: A collaborative design model. Educational Technology Research and Development, 51(4), 85-103.
    Moretti, G., Sprugnoli, R., Menini, S., & Tonelli, S. (2016). ALCIDE: Extracting and visualising content from large document collections to support humanities studies. Knowledge-Based Systems, 111, 100-112.
    Newman, D. R. (1995). A content analysis method to measure critical thinking in face-to-face and computer supported group learning. Interpersonal Computing and Technology Journal, 3(2), 56-77.
    Pollock, P. H., & Wilson, B. M. (2002). Evaluating the impact of internet teaching: Preliminary evidence from American national government classes. PS: Political Science & Politics, 35(3), 561-566.
    Robertson, S. E., & Jones, K. S. (1976). Relevance weighting of search terms. Journal of the American Society for Information science, 27(3), 129-146.
    Sadler, T. D., Romine, W. L., Stuart, P. E., & Merle‐Johnson, D. (2013). Game‐based curricula in biology classes: Differential effects among varying academic levels. Journal of Research in Science Teaching, 50(4), 479-499.
    Salmon, G. (2003). E-moderating: The key to teaching and learning online. Psychology Press.
    Sanders, D. W., & Morrison-Shetlar, A. I. (2001). Student attitudes toward web-enhanced instruction in an introductory biology course. Journal of Research on computing in Education, 33(3), 251-262.
    Sins, P. H., Savelsbergh, E. R., van Joolingen, W. R., & van Hout-Wolters, B. H. (2011). Effects of face-to-face versus chat communication on performance in a collaborative inquiry modeling task. Computers & Education, 56(2), 379-387.
    SOLOMON, J., & MAZZOLINI, M. (2004). How can the computer help students in this age of life long learning?. In Teaching And Learning Of Physics In Cultural Contexts (pp. 433-440).
    SOLOMON, J., & MAZZOLINI, M. (2004). How can the computer help students in this age of life long learning?. In Teaching And Learning Of Physics In Cultural Contexts (pp. 433-440).
    Sun, G., & Bin, S. (2018). Topic Interaction Model Based on Local Community Detection in MOOC Discussion Forums and its Teaching. Educational Sciences: Theory & Practice, 18(6).
    Tiene, D. (2000). Online discussions: A survey of advantages and disadvantages compared to face-to-face discussions. Journal of Educational Multimedia and Hypermedia, 9(4), 369-382.
    Wang, W., Feng, Y., & Dai, W. (2018). Topic analysis of online reviews for two competitive products using latent Dirichlet allocation. Electronic Commerce Research and Applications, 29, 142-156.
    Warschauer, M. (1995). Comparing face-to-face and electronic discussion in the second language classroom. CALICO journal, 7-26.
    Webb, D. J., & Mohr, L. A. (1998). A typology of consumer responses to cause-related marketing: From skeptics to socially concerned. Journal of public policy & marketing, 17(2), 226-238.
    Yan, X., Guo, J., Lan, Y., & Cheng, X. (2013, May). A biterm topic model for short texts. In Proceedings of the 22nd international conference on World Wide Web (pp. 1445-1456).
    Yang, Y., Yao, Q., & Qu, H. (2017). VISTopic: A visual analytics system for making sense of large document collections using hierarchical topic modeling. Visual Informatics, 1(1), 40-47.
    Zeidler, D. L., & Zeidler, L. (Eds.). (2003). The role of moral reasoning on socioscientific issues and discourse in science education (Vol. 19). Springer Science & Business Media.
    Zohar, A., & Nemet, F. (2002). Fostering students` knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 39(1), 35-62.
    Description: 碩士
    國立政治大學
    圖書資訊與檔案學研究所
    108155013
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108155013
    Data Type: thesis
    DOI: 10.6814/NCCU202101446
    Appears in Collections:[圖書資訊與檔案學研究所] 學位論文

    Files in This Item:

    File Description SizeFormat
    501301.pdf2998KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback