政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/136843
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113869/144892 (79%)
造访人次 : 51884476      在线人数 : 575
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/136843


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/136843


    题名: 以成對共識分數評估多個分類器中含雜亂標籤的分類結果
    Evaluate the Classification Result with Cacophonous Labels of Multiple Classifiers by Pairwise Consensus Score
    作者: 陳璿心
    Chen, Hsuan-Hsin
    贡献者: 蕭舜文
    Hsiao, Shun-Wen
    陳璿心
    Chen, Hsuan-Hsin
    关键词: 基因演算法
    惡意程式標籤
    惡意程式家族
    Malware labeling
    AV labels
    Malware family
    日期: 2021
    上传时间: 2021-09-02 15:53:16 (UTC+8)
    摘要: 在資訊安全的領域中,有許多惡意軟體分類器,這些分類器的目的是給予不同惡意軟體其家族名稱。然而這些家族名稱不像是在做圖形辨識,例如判斷手寫數字的標籤是基於事實,而這些惡意程式家族是基於不同觀點給予不同的標籤。
    我們想知道哪一種觀點是被大眾所接受,所以發展一個不同於多數決的投票方法,而是採用一次比較一對分類器中的一對惡意軟體,並從每一對分類器中加總計算不同對惡意軟體之間的共識分數,最後這些分數就會成為我們判斷獲得最多大眾觀點的依據。此外建立在成對的共識分數機制上,我們另外採用了基因演算法,設法交換出具有最高分數的分類結果,成為在分類惡意軟體的結果可依循的答案。
    除了設計演算法來尋找受到較多支持的惡意軟體偵測廠商外,本研究也嘗試使用三種不同來源的惡意程式資料,並加入經基因演算法取得的最佳解來計算每個來源個別的共識分數,並證明取得的最佳解經過交換後分數都會比為交換前來的更高分。
    In the field of cybersecurity, there are lots of classifiers (AV vendors) and each classifier will give malware samples classified results, namely naming labels to include malware families. Unfortunately, each label does not have a fixed answer based on fact like handwritten number recognition but based on each classifiers’ viewpoints, thus, we want to know which classifier receives the most support from others. Instead of using majority voting, we develop a scoring system Pairwise Consensus Score-PCS with the idea of pairwise comparison. In addition, based on the scoring system, we propose a heuristic genetic algorithm-HAGL to obtain a group of labels that unify all classifiers and get the optimized consensus score. In the research, we found that our method had a better performance than other traditional data mining methods and the score reach a higher level after value exchange.
    參考文獻: [1] SonicWall Inc., “2020 SonicWall Cyber Threat Report,”sonicwall.com,2020. [Online].Available:https://www.sonicwall.com/medialibrary/en/infographic/infographic-2020-sonicwall-cyber-threat-report.pdf. [Accessed May. 29, 2021].
    [2] VirusTotal. Accessed: May 29, 2021. [Online]. Available: https://www.virustotal.com/
    [3] CARO. Caro naming convention. [Online]. Available: http://www.caro.org/articles/naming.html
    [4] F. Maggi, A. Bellini,G. Salvaneschi, S. Zanero, “Finding Non-trivial Malware Naming Inconsistencies”, in International Conference on Information Systems Security(Lecture Notes in Computer Science), vol 7093, pp. 144-159, Springer, Berlin, Heidelberg, 2016,doi:10.1007/978-3-642-25560-110
    [5] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and J. Nazario. “Automated Classification and Analysis of Internet Malware,” in International Symposium on Recent Advances in Intrusion Detection(RAID), 2007,doi: 10.1007/978-3-540-74320-010.
    [6] M. Sebasti ́an, R. Rivera, P. Kotzias, and J. Caballero, “Avclass: A tool for massive malware labeling,” in International Symposium on Research in Attacks, Intrusions, and Defenses(Lecture Notes in Computer Science), vol 9854, pp 144-159, Cham, Switzerland: Springer,2016,doi:10.1007/978-3-642-25560-110
    [7] =M. Hurier et al., “Euphony: Harmonious unification of cacophonous anti-virus vendor la-bels for android malware,” in2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR), May 2017, pp. 425-435, doi:10.1109/MSR.2017.57.
    [8] L. Alexandre, A. Campilho and M. Kamel, “On combining classifiers using sum and product rules,” in Pattern Recognition Letters,2001, vol. 22, no. 12, pp. 1283-1289, doi:10.1016/s0167-8655(01)00073-3
    [9] Y. Sun, M. S. Kamel, and A. K. Wong, “Empirical Study on Weighted Voting Multiple Classifiers,” in Pattern Recognition and Data Mining,2005, pp. 335–34
    [10] D. Hand and K.Yu, “Idiot’s Bayes: Not So Stupid after All?,” in International Statistical Review / Revue Internationale De Statistique,2001, vol. 69, no. 3, pp. 385-398,doi:10.2307/1403452
    [11] C.C. Chang and C.J. Lin, “LIBSVM: a library for support vector machines,” in ACM transactions on intelligent systems and technology (TIST),2011, vol. 2, no. 3, pp.1-27,doi:10.1145/1961189.1961199
    [12] Y. Freund, R. Schapire, and N. Abe, “A short introduction to boosting,” in Journal-Japanese Society For Artificial Intelligence, 1999, vol. 14, no. 771-780, pp.1612
    [13] Sung, A. H., Xu, J., Chavez, P., and Mukkamala, S., “Static analyzer of vicious executables(save),” in20th Annual Computer Security Applications Conference. IEEE, 2004, pp. 326-334
    [14] U. Bayer, A. Moser, C. Kruegel, and E. Kirda, “Dynamic analysis of malicious code,” Journal in Computer Virology, 2006, vol. 2, pp. 66-77
    [15] L. Alexandre, A. Campilho and M. Kamel, “On combining classifiers using sum and product rules,” Pattern Recognition Letters, 2001, vol. 22, no. 12, pp. 1283-1289, doi: 10.1016/s0167-8655(01)00073-3
    [16] S. S. Hansen, T. M. T. Larsen, M. Stevanovic and J. M. Pedersen, “An approach for detection and family classification of malware based on behavioral analysis,”2016 InternationalConference on Computing, Networking and Communications (ICNC), 2016, pp. 1-5, doi:10.1109/ICCNC.2016.7440587.
    [17] K.-F. Man, K.-S. Tang and S. Kwong, “Genetic algorithms: concepts and applications [inengineering design],” IEEE transactions on Industrial Electronics, 1996, vol.43, pp.519-534
    [18] J. H. Holland, “Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence,” MIT press, 1922
    [19] Genta Aoki and Yasubumi Sakakibara, “Convolutional neural networks for classification of alignments of non-coding RNA sequences,” Bioinformatics,2018, vol. 34,pp. 237-244
    [20] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,1997, vol.9, no. 8, pp.1735-178

    [21] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu and A. Thomas, “Malware classification with recurrent networks,”2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015, pp.1916-1920
    [22] G. Sun and Q. Qian, “Deep Learning and Visualization for Identifying Malware Families,” in IEEE Transactions on Dependable and Secure Computing,2021, vol. 18, no. 1, pp. 283-295,doi: 10.1109/TDSC.2018.2884928.
    [23] Malware Knowledge Base. Accessed: July 7, 2021. [Online]. Available: https://owl.nchc.org.tw/
    [24] W. J. Chiu, “Automated Malware Family Signature Generation based on Runtime API Call Sequence,” Unpublished master’s thesis, 2018, National Taiwan University, Taipei, Taiwan, doi: 10.6342/NTU201802357
    描述: 碩士
    國立政治大學
    資訊管理學系
    108356017
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0108356017
    数据类型: thesis
    DOI: 10.6814/NCCU202101327
    显示于类别:[資訊管理學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    601701.pdf1935KbAdobe PDF262检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈