政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/136769
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 114014/145046 (79%)
造访人次 : 52061124      在线人数 : 749
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 理學院 > 心理學系 > 學位論文 >  Item 140.119/136769


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/136769


    题名: 結構方程模型之懲罰概似方法與其大樣本性質
    A Penalized Likelihood Method for Structural Equation Modeling and Its Asymptotic Properties
    作者: 黃柏僩
    Huang, Po-Hsien
    贡献者: 心理系
    关键词: 結構方程模型 ; 懲罰概似 ; 模型選擇 ; 因素分析模型 ; MIMIC模型 
    structural equation modeling ; penalized likelihood ; model selection ; factor analysis model ; MIMIC model
    日期: 2014-06
    上传时间: 2021-08-10 16:43:20 (UTC+8)
    摘要: 結構方程模型(structural equation modeling,簡稱SEM)乃心理學研究常用之多變量統計方法。在SEM的架構下,研究者可根據現有的心理學理論建立假設模型,並檢驗該模型之適切性;然而,當心理學理論發展尚未臻成熟時,SEM亦可能用以探索變項間的可能關係(Joreskog, 1993)。有鑒於實徵研究很可能同時兼具驗証性與探索性成分,以協助研究者對人類行為有更廣泛的了解,故此,本論文試圖提出一針對SEM模型的懲罰概似(penalized likelihood,簡稱PL)方法,以進行兼具驗証性與探索性成分之SEM分析。在此PL方法下,SEM的模型界定由驗証性與探索性兩部分所構成,前者包含了根據理論所推衍出來的變項關係與限制,後者則由一組被懲罰的參數(penalized parameters)所構成。此PL方法可產生稀疏估計值(sparse estimate),得以有效率地了解變項間關係,並控制最終模型的複雜度。為優化所提出的PL估計準則,本論文發展了期望條件最大化(expectation-conditional maximization,簡稱ECM)算則。透過大樣本理論,本研究建立PL於SEM的理論特性,包括PL估計式的局部與總體神諭性質(oracle property),以及赤池(Akaike)訊息指標與貝氏(Bayesian)訊息指標於PL的模型選擇特性。最後,本研究亦以模擬實驗與真實資料範例評估並展示此PL方法的實徵表現與應用價值。
    Structural equation modeling (SEM) is a commonly used multivariate statistical method in psychological studies. The application of SEM involves a confirmatory testing of the models proposed by researchers based on available theories. Yet, in practice, a model generating approach, where modifications of the models are being explored, may well take place (Joreskog, 1993), especially when the development of the substantive theory is still in its infancy. A method for SEM that can embrace the existing theories on one hand and the ambiguous relations that await further exploration on the other will be of great value to advancing scientific theories. In this dissertation, a penalized likelihood (PL) method for SEM is proposed as an attempt to target this goal. Under the proposed PL method, an SEM model is formulated with a confirmatory part and an exploratory part. The confirmatory part contains all the theory-derived relations and constraints. The exploratory part, wherein a set of penalized parameters is specified to represent the ambiguous relations, is data-driven yet with model complexity controlled by the penalty term. Through the sparse estimation of PL, the relationships among variables can be efficiently explored. As the penalty level is chosen appropriately, PL can lead to a SEM model that balances the tradeoff between model goodness-of-fit and model complexity. An expectation-conditional maximization (ECM) algorithm is developed to maximize the PL estimation criterion with several state-of-art penalty functions. Four theorems on the asymptotic behaviors of PL are derived, including the local and global oracle property of PL estimators and the selection consistency of Akaike and Bayesian information criterion. Two simulations are conducted to evaluate the empirical performance of the proposed PL method, and finally the practical utility of PL is demonstrated using two real data examples.
    關聯: 國立臺灣大學心理學研究所博士論文
    数据类型: thesis
    DOI 連結: https://doi.org/10.6342/NTU.2014.00747 
    DOI: 10.6342/NTU.2014.00747 
    显示于类别:[心理學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    1.pdf320KbAdobe PDF2203检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈