政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/136688
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113873/144892 (79%)
造訪人次 : 51951206      線上人數 : 556
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/136688


    題名: 透過專利數據進行技術預測:探討自駕車技術之擴散
    Technology Forecasting with Patent Data: The Diffusion of Autonomous Vehicle Technology
    作者: 張登凱
    Chang, Teng-Kai
    貢獻者: 宋皇志
    Sung, Huang-Chih
    張登凱
    Chang, Teng-Kai
    關鍵詞: 自駕車
    技術預測
    專利數據
    創新擴散
    Autonomous Vehicles
    Technology Forecasting
    Patent Data
    Diffusion of Innovation
    日期: 2021
    上傳時間: 2021-08-04 16:27:43 (UTC+8)
    摘要: 自駕車已不再只是科幻電影小說裡的情節,即將在21世紀當中問世。自駕車是一個跨技術、跨產業的整合,人工智慧技術的發展絕對是其中一個重要的因素。許多國家、企業都紛紛投入到自駕車領域當中,其中美國地區的發展可以算是全世界的領先指標,無論是政策、技術,甚至產業。而台灣也在自駕車產業當中扮演舉足輕重的角色。

    本研究旨在探討是否能夠利用專利數據進行自駕車技術的預測預測。透過分析模型的研究,驗證是否符合過去學者對於技術預測模型的相關研究結論,並找出自駕車技術所適用的技術預測模型,為其進行技術預測推論。提供往後學術研究之參考價值,以及對相關產業貢獻。

    經研究後發現,專利數據除了能夠分析本身的成長趨勢外,也能夠作為技術預測的數據來源,研究該領域技術的發展。在模型分析上,本研究回應過去學者對於能夠良好的解釋數據的模型是否代表能夠良好的預測數據未來發展所提出的質疑,證實在專利數據上最佳配適模型不代表具有最佳的預測能力。最後,自駕車整體技術發展即將從成長階段進入到成熟期,現階段正在快速成長當中,專利申請活動增加。而研究發現技術與市場存在遲滯期,自駕車市場現階段以Level 2以下與少量Level 3之自駕車技術為主,而Level 3以上之自駕車技術與市場皆尚未成熟,需要關鍵技術以驅動Level 3以上技術發展。
    Autonomous vehicles are no longer just plots in science fiction movies and novels, as they have become a heated topic and are expected to be fully developed in the 21st century. Autonomous vehicle technology is interdisciplinary, and AI technology is the main core of its development. Many countries and companies have invested in the field of autonomous vehicles. Among them, the United States can be regarded as the world`s trailblazer in the field. Taiwan also plays a key role in the industry.

    The purpose of this research is to explore whether patent data can be used to forecast the development of autonomous vehicle`s technology. Through model analyzing method, this research aims to verify whether it is in line with the conclusions reached by relevant research on technology forecasting, and to find out the best model for the diffusion of autonomous vehicle technology. This study hopes to provide a reference value for future academic research and related industries.

    In this research, it is found that data from patents of autonomous vehicle can not only analyze its own growth trend but also be used for technology forecasting to understand its development. By using the model analyzing method to decide the proper model for patent data, this research responds to the doubts raised by past scholars about whether a model that can fit the data well can also predict future development. It proves that the best-fitting model for patent data does not necessarily mean that it`s the most predictive. One thing found in the research is that the entire autonomous vehicle technology is about to reach the maturity stage from the growth stage. At this stage, it is growing rapidly, and the number of patent applications is increasing. The last thing suggested by the research is a time lag between technology and the market. The autonomous vehicle market is currently dominated by level 2 and a small number of level 3 autonomous vehicles, while those above level 3 are still developing. Certain essential techniques might be needed to drive autonomous vehicles` development at level 3 or above.
    參考文獻: Bass, F. M. (1969). A New Product Growth for Model Consumer Durables. Management Science. doi:https://doi.org/10.1287/mnsc.15.5.215
    Campbell, R. S. (1983). Patent trends as a technological forecasting tool. World Patent Information, 5(3), 137-143. doi:https://doi.org/10.1016/0172-2190(83)90134-5
    Chapin, F. S. (1928). Cultural Change: Century Company.
    Chen, M.-J. (1996). Competitor Analysis and Interfirm Rivalry: Toward a Theoretical Integration. The Academy of Management Review, 21(1), 100-134. doi:10.2307/258631
    Chen, Y.-H., Chen, C.-Y., & Lee, S.-C. (2011). Technology forecasting and patent strategy of hydrogen energy and fuel cell technologies. International Journal of Hydrogen Energy, 36(12), 6957-6969. doi:https://doi.org/10.1016/j.ijhydene.2011.03.063
    Daim, T. U., Rueda, G., Martin, H., & Gerdsri, P. (2006). Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technological Forecasting and Social Change, 73(8), 981-1012. doi:https://doi.org/10.1016/j.techfore.2006.04.004
    Davis, A. (1939). Technicways in American Civilization - Notes on a Method of Measuring Their Point of Origin. Social Forces, 18(3), 317-330. Retrieved from https://heinonline.org/HOL/P?h=hein.journals/josf18&i=325
    https://heinonline.org/HOL/PrintRequest?handle=hein.journals/josf18&collection=journals&div=43&id=325&print=section&sction=43
    Ernst, H. (1997). The Use of Patent Data for Technological Forecasting: The Diffusion of CNC-Technology in the Machine Tool Industry. Small Business Economics.
    Fisher, J. C., & Pry, R. H. (1971). A simple substitution model of technological change. Technological Forecasting and Social Change, 3, 75-88. doi:https://doi.org/10.1016/S0040-1625(71)80005-7
    Fourt, L. A., & Woodlock, J. W. (1960). Early Prediction of Market Success for New Grocery Products. Journal of Marketing, 25(2), 31-38. doi:10.1177/002224296002500206
    Gilfillan, S. C. (1935). Inventing the Ship: A Study of the Inventions Made in Her History Between Floating Log and Rotorship; a Self-contained But Companion Volume to the Author`s "Sociology of Invention" with 80 Illustrations, Bibliographies, Notes and Index: Follett publishing Company.
    Hardie, B. G. S., Fader, P. S., & Wisniewski, M. (1998). An empirical comparison of new product trial forecasting models. Journal of Forecasting, 17(3‐4), 209-229. doi:https://doi.org/10.1002/(SICI)1099-131X(199806/07)17:3/4<209::AID-FOR694>3.0.CO;2-3
    Hilgard, E. R. (1956). Theories of learning (2nd ed. ed.). New York: Appleton-Century-Crofts.
    Jennifer, S. (2019). SAE Standards News: J3016 automated-driving graphic update. Retrieved from https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic
    Kato, S., Takeuchi, E., Ishiguro, Y., Ninomiya, Y., Takeda, K., & Hamada, T. (2015). An Open Approach to Autonomous Vehicles. IEEE Micro, 35(6), 60-68. doi:10.1109/MM.2015.133
    Katz, E. (1962). Notes on The Unit of Adoption in Diffusion Research. Sociological Inquiry, 32(1), 3-9. doi:https://doi.org/10.1111/j.1475-682X.1962.tb00525.x
    Katz, E., Levin, M. L., & Hamilton, H. (1963). Traditions of Research on the Diffusion of Innovation. American Sociological Review, 28(2), 237-252. doi:10.2307/2090611
    Kenney, J. B. (2011). Dedicated Short-Range Communications (DSRC) Standards in the United States. Proceedings of the IEEE, 99(7), 1162-1182. doi:10.1109/JPROC.2011.2132790
    Kim, D. H., Shin, Y. G., Park, S. S., & Jang, D. S. (2009). Forecasting Diffusion of Technology by using Bass Model. AIP Conference Proceedings, 1148(1), 149-152. doi:10.1063/1.3225258
    Malthus, T. R. (1798). An Essay on the Principle of Population: London, J. Johnson.
    Mansfield, E. (1961). Technical Change and the Rate of Imitation. Econometrica, 29(4), 741-766. doi:10.2307/1911817
    Martino, J. P. (1993). Technological forecasting for decision making: McGraw-Hill, Inc.
    Meade, N., & Islam, T. (1998). Technological Forecasting -- Model Selection, Model Stability, and Combining Models. Management Science, 44(8), 1115-1130. Retrieved from http://www.jstor.org/stable/2634690
    Meade, N., & Islam, T. (2001). Forecasting the diffusion of innovations: Implications for time-series extrapolation. In Principles of forecasting (pp. 577-595): Springer.
    Pearl, R. (1924). The Curve of Population Growth. Proceedings of the American Philosophical Society, 63(1), 10-17. Retrieved from http://www.jstor.org/stable/984438
    Pearl, R., & Reed, L. J. (1920). On the Rate of Growth of the Population of the United States since 1790 and Its Mathematical Representation. Proceedings of the National Academy of Sciences of the United States of America, 6(6), 275-288. doi:10.1073/pnas.6.6.275
    Porter, A. L., Roper, A. T., Mason, T. W., Rossini, F. A., & Banks, J. (1991). Forecasting and management of technology. New York: John Wiley.
    Rhyne, R. (1974). Technological forecasting within alternative whole futures projections. Technological Forecasting and Social Change, 6, 133-162. doi:https://doi.org/10.1016/0040-1625(74)90014-6
    Rogers, E. M. (1962). Diffusion of innovations. New York: Free Press of Glencoe.
    Ruttan, V. W. (1959). Usher and Schumpeter on Invention, Innovation, and Technological Change. The Quarterly Journal of Economics, 73(4), 596-606. doi:10.2307/1884305
    Ryan, B., & Gross, N. C. (1943). The diffusion of hybrid seed corn in two Iowa communities. Rural Sociology. Retrieved from https://digital.library.cornell.edu/catalog/chla5075626_4294_001
    Sundqvist, S., Frank, L., Puumalainen, K., & Kämäräinen, J. (2008). Forecasting the Critical Mass of Wireless Communications.
    Trappey, C. V., Wu, H.-Y., Taghaboni-Dutta, F., & Trappey, A. J. C. (2011). Using patent data for technology forecasting: China RFID patent analysis. Advanced Engineering Informatics, 25(1), 53-64. doi:https://doi.org/10.1016/j.aei.2010.05.007
    Vincent, M., Andrew, T., & Kess, M. (2020). 美重劃V2X頻譜掀波 DSRC亮技術優勢力守版圖. Retrieved from https://www.2cm.com.tw/2cm/zh-tw/tech/8E437E37CE3B4ACF90E060AB92A5961B
    WIPO. PATENTSCOPE Artificial Intelligence Index. Retrieved from https://www.wipo.int/tech_trends/en/artificial_intelligence/patentscope.html#
    WIPO. (2019). WIPO Technology Trends 2019: Artificial Intelligence. Retrieved from
    Xavier, M., Thomas, D., Nikolaus, L., Michael, R., Antonella, M.-P., Rakshita, A., & Florian, S. (2015). Revolution in the Driver`s Seat: The Road to Autonomous Vehicles. Retrieved from https://www.bcg.com/publications/2015/automotive-consumer-insight-revolution-drivers-seat-road-autonomous-vehicles
    马天旗, 黄文静, 李杰, 张丛, 李萍, 郝政宇, & 王冀. (2015). 专利分析 方法、图表解读与情报挖掘. 北京: 知识产权出版社.
    冯延鑫. (2017). 基于符号回归的创新扩散模型研究. (碩士). 大連理工大學,
    朱文伶. (2010). 行動電話擴散研究之模型選用及驅動因子分析. (博士). 國立政治大學, 台北市. Retrieved from https://hdl.handle.net/11296/b5j8r6
    李思穎. (2020). 以專利分析探究新興領域之產業融合-以自駕車為例. (碩士). 國立政治大學, 台北市. Retrieved from https://hdl.handle.net/11296/4stk8n
    卓立庭. (2020). 從專利談自駕車發展:跨技術、跨產業合作才是加速自駕車商業化的妙方. Retrieved from https://www.bnext.com.tw/article/58618/self-driving-patent-ict-ai
    翁國樑, 李玉忠, 柯明寬, & 徐錦衍. (2019). 自駕車發展趨勢與關鍵技術. 工程, 92, 23-41.
    張凱喬. (2017). 美國各州自駕車測試法規訂定現況. Retrieved from https://www.artc.org.tw/chinese/03_service/03_02detail.aspx?pid=3173
    郭庭昱. (2019). 最懂自駕車的台灣人詹景堯:自駕車不會跳躍式的成長. Retrieved from https://www.wealth.com.tw/home/articles/22806
    陳建次. (2019). 國際自駕車運用與技術趨勢. 車輛研測專刊.
    陳敬典. (2018). 自動駕駛車發展現況與未來趨勢. 車輛研測專刊.
    陳敬典. (2020). 全球自駕車產業發展現況與未來趨勢. 車輛研測專刊.
    黃威陞. (2019). 智慧時代來臨 車聯網技術的選擇. Retrieved from https://www.artc.org.tw/chinese/03_service/03_02detail.aspx?pid=13371
    劉湝沂. (2018). 影音串流平台之創新擴散模型研究-以Netflix和Spotify為例. (碩士). 國立政治大學, Retrieved from http://thesis.lib.nccu.edu.tw/record/#G1063641331%22.
    鄭幼民. (2008). 數位相機產業的技術發展趨勢研究. (碩士). 國立交通大學, 新竹市. Retrieved from https://hdl.handle.net/11296/db4ttz
    鄭俊彥. (2020). 透過專利文字探勘辨識潛在競爭者之方法:以金融科技產業為例. (碩士). 國立政治大學, 台北市. Retrieved from https://hdl.handle.net/11296/4ys8ry
    蕭鴻凱. (2020). 建構下世代行車安全藍圖 DSRC/C-V2X標準細比拚. Retrieved from https://www.2cm.com.tw/2cm/zh-tw/tech/1BE4026BE9BB4E13814A2832AB76AED8
    描述: 碩士
    國立政治大學
    科技管理與智慧財產研究所
    108364119
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0108364119
    資料類型: thesis
    DOI: 10.6814/NCCU202101010
    顯示於類別:[科技管理與智慧財產研究所] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    411901.pdf4999KbAdobe PDF2455檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋