政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/136333
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 114014/145046 (79%)
造访人次 : 52051907      在线人数 : 757
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 財務管理學系 > 學位論文 >  Item 140.119/136333


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/136333


    题名: 社群信心聲量與房市之關聯性
    The Relationship between Internet Community Sentiment and Real Estate Market
    作者: 張均綸
    Chang, Chun-Lun
    贡献者: 陳明吉
    Chen, Ming-Chi
    張均綸
    Chang, Chun-Lun
    关键词: 房地產市場
    情緒指數
    社群聲量
    交易量
    議價空間
    流動天數
    internet sentiments
    housing market
    consumer confident index
    日期: 2021
    上传时间: 2021-08-04 14:45:09 (UTC+8)
    摘要: 過去在研究影響不動產價格的因素中,除了常用的基本面因素以外,投資人的情緒也會影響房價的波動,例如隨著市場對於景氣和房市樂觀,可能會導致屋主惜售,進一步推升房市價格。而衡量市場投資人的指標有很多,包括消費者信心指數、Google搜索量指數、文字探勘技術等等。而本篇研究即是將兩種常見的方法進行結合和比較,即消費者信心指數和文字探勘。首先透過社群大數據平台Opview關鍵字設定功能建構情緒字典,以消費者信心指數的建構方式為參考依據,重新建構衡量消費者情緒的指標,稱之為社群信心聲量,並藉這個機會來比較透過社群所建構之指標,和傳統透過問卷調查方式所建立的消費者信心指標,有何異同。聲量指的是網路上的貼文和回文數,所以透過蒐集這些網路上的聲量,我們可以獲得比消費者信心指數更即時且大樣本的數據。本研究採集了2012年1月至2020年12月的資料,針對台北地區房屋的房價、成交量、流動天數、議價空間進行分析,並比較了兩種指標在不同應變數下的解釋力,而本篇研究發現,在房價和成交量的部分,社群聲量指標確實有更好的顯著水準,而在議價空間則是消費者信心指數表現較好,兩個指標各有所長,也就是說,未來在分析市場的有限情緒時,除了消費者信心指數,或許也可以把社群信心聲量納入考量,是不錯的研究工具。
    In the past, there are many factors affecting real estate prices, in addition to the fundamental factors, investor sentiment will also affect the fluctuation of house prices. For example, as the market is optimistic about the boom and the housing market, it may cause homeowners to be reluctant to sell and further push up the housing market price. Therefore, there are many indicators to measure market investors, including consumer confidence index, Google search volume index, text mining technology and so on.
    This study combines and compares the two methods. The keyword setting function of the social big data platform Opview is used to construct a sentiment dictionary, which is based on the consumer confidence index. The construction method is reconstructing an indicator to measure consumer sentiment, which is called the volume of community, and comparing whether the indicators constructed through the community can beat the traditional consumer confidence index. The volume of voice is the number of posts and palindromes on the Internet, so by collecting the volume of voice on these networks, we can obtain more real-time and larger sample data than the consumer confidence index. This research collects data from January 2012 to December 2020, and analyzes the housing prices, transaction volume, flow days, and bargaining space of the Taipei area. This research found that in the part of housing prices and transaction volume, the community volume index is indeed better than the consumer confidence index, and the consumer confidence index performs better in the bargaining space. In the future, when analyzing the limited sentiment of the market, in addition to the consumer confidence index, you can take internet community into account, it is possible that better predictive power can be obtained.
    參考文獻: 中文參考文獻
    1.王韻怡、池祥萱、周冠男(2016)。行為財務學文獻回顧與展望: 台灣市場之研究。經濟論文叢刊,44(1):1-55。
    2.許慶安(2017)。運用探勘技術於社會輿情以預測新竹市房地產市場之研究。未出版之碩士論文,國立勤益科技大學資訊管理系,台中市。
    3.陳天德(1993)。消費者信心指數與房地產景氣相關之研究。未出版之碩士論文,國立政治大學企業管理研究所,台北市。
    4.蔡宜君(2016)。消費者信心指數與房地產景氣之關聯性研究。未出版之碩士論文,世新大學財務金融學研究所(含碩專班),臺北市。
    5.朱芳妮、楊茜文、蘇子涵、陳明吉(2020)。情緒會影響房市嗎?指數編制與驗證。住宅學報,Vol.29, No.2, pp.35-68.
    6.朱芳妮、楊茜文、黃御維、陳明吉(2020)。媒體傳播效應與房市變化關聯性之驗證。管理學報,Vol.37, No.3, pp.225-257.
    7.鐘國應、曾萬益(2020)。我國2017至2019年「全民國防教育暑期戰鬥營」之網路輿情情勢-「以OpView社群口碑資料庫」為觀察視角。軍事社會科學專刊,Vol.17,pp.7-44
    8.劉振隆、郭庭瑜、黃湋宸、蔡佳潔(2018)。以社群大數據基礎之台灣民眾國外旅遊概況與觀光行為模式。觀光與休閒管理期刊,Vol.6,pp.13-22
    英文參考文獻
    9.an de Meulen, P., Micheli, M., & Schmidt, T. (2014). Forecasting real estate prices in Germany: the role of consumer confidence. Journal of Property Research, 31(3), 244-263.
    10.Asabere, P., Huffman, F., & Mehdian, S. (1993). Mispricing and optimal time on the market. Journal of real Estate research, 8(1), 149-155.
    11.Baker, M., & Wurgler, J. (2007). Investor sentiment in the stock market. Journal of economic perspectives, 21(2), 129-152.
    12.Beracha, E., Lang, M., & Hausler, J. (2019). On the relationship between market sentiment and commercial real estate performance—a textual analysis examination. Journal of real Estate research, 41(4), 605-638.
    13.Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of computational science, 2(1), 1-8.
    14.Case, K. E., & Shiller, R. J. (1990). Forecasting prices and excess returns in the housing market. Real Estate Economics, 18(3), 253-273.
    15.Croce, R. M., & Haurin, D. R. (2009). Predicting turning points in the housing market. Journal of Housing Economics, 18(4), 281-293.
    16.Dong, Z., Hui, E. C., & Yi, D. (2021). Housing market sentiment and homeownership. Journal of Housing and the Built Environment, 36(1), 29-46.
    17.Hohenstatt, R., Käsbauer, M., & Schäfers, W. (2011). " Geco" and its potential for real estate research: Evidence from the US housing market. Journal of real Estate research, 33(4), 471-506.
    18.Hott, C., & Monnin, P. (2008). Fundamental real estate prices: An empirical estimation with international data. The Journal of Real Estate Finance and Economics, 36(4), 427-450.
    19.Im Tan, L., San Phang, W., Chin, K. O., & Anthony, P. (2015). Rule-based sentiment analysis for financial news. Paper presented at the 2015 IEEE International Conference on Systems, Man, and Cybernetics.
    20.Ling, D. C., Naranjo, A., & Scheick, B. (2014). Investor sentiment, limits to arbitrage and private market returns. Real Estate Economics, 42(3), 531-577.
    21.Loughran, T., & McDonald, B. (2011). When is a liability not a liability? Textual analysis, dictionaries, and 10‐Ks. The journal of Finance, 66(1), 35-65.
    22.Malkiel, B. G., & Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The journal of Finance, 25(2), 383-417.
    23.Marcato, G., & Nanda, A. (2016). Information content and forecasting ability of sentiment indicators: case of real estate market. Journal of real Estate research, 38(2), 165-204.
    24.Rao, T., & Srivastava, S. (2012). Analyzing stock market movements using twitter sentiment analysis.
    25.Rapach, D. E., & Strauss, J. K. (2007). Forecasting real housing price growth in the eighth district states. Federal Reserve Bank of St. Louis. Regional Economic Development, 3(2), 33-42.
    26.Rouwendal, J., & Longhi, S. (2008). The effect of consumers` expectations in a booming housing market: space-time patterns in the Netherlands, 1999–2000. Housing Studies, 23(2), 291-317.
    27.Shiller, R. J. (2007). Understanding recent trends in house prices and home ownership: National Bureau of Economic Research.
    28.Soo, C. K. (2013). Essays in household finance and housing economics.
    29.Stein, J. C. (1995). Prices and trading volume in the housing market: A model with down-payment effects. The Quarterly Journal of Economics, 110(2), 379-406.
    30.Stevenson, S. (2008). Modeling housing market fundamentals: Empirical evidence of extreme market conditions. Real Estate Economics, 36(1), 1-29.
    31.Sul, H., Dennis, A. R., & Yuan, L. I. (2014). Trading on twitter: The financial information content of emotion in social media. Paper presented at the 2014 47th Hawaii International Conference on System Sciences.
    32.Tetlock, P. C. (2007). Giving content to investor sentiment: The role of media in the stock market. The journal of Finance, 62(3), 1139-1168.
    33.Walker, C. B. (2014). Housing booms and media coverage. Applied Economics, 46(32), 3954-3967.
    34.Walker, C. B. (2016). The direction of media influence: Real-estate news and the stock market. Journal of Behavioral and Experimental Finance, 10, 20-31.
    35.Wheaton, W., & Nechayev, G. (2008). The 1998-2005 housing “bubble” and the current “correction”: What’s different this time? Journal of real Estate research, 30(1), 1-26.
    36.Wu, L., & Brynjolfsson, E. (2015). The future of prediction: How Google searches foreshadow housing prices and sales Economic analysis of the digital economy (pp. 89-118): University of Chicago Press.
    37.Zamani, M., & Schwartz, H. A. (2017). Using twitter language to predict the real estate market. Paper presented at the Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers.
    38.Zhou, Z.-g. (1997). Forecasting sales and price for existing single-family homes: a VAR model with error correction. Journal of real Estate research, 14(2), 155-167.
    描述: 碩士
    國立政治大學
    財務管理學系
    108357026
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0108357026
    数据类型: thesis
    DOI: 10.6814/NCCU202100843
    显示于类别:[財務管理學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    702601.pdf2135KbAdobe PDF275检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈