English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114205/145239 (79%)
造訪人次 : 52559469      線上人數 : 869
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 資訊管理學系 > 期刊論文 >  Item 140.119/136097
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/136097


    題名: Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning
    作者: 周彥君;周平
    Chou, Yen-Chun;Chou, Ping
    Chuang, Howard Hao-Chun;Liang, Ting-Peng
    貢獻者: 資管系
    關鍵詞: Analytics;Customer repurchase;Buy till You Die;Lasso;Machine Learning
    日期: 2022-01
    上傳時間: 2021-07-20 13:29:09 (UTC+8)
    摘要: Predicting customer repurchase propensity/frequency has received broad research interests from marketing, operations research, statistics, and computer science. In the field of marketing, Buy till You Die (BTYD) models are perhaps the most representative techniques for customer repurchase prediction. Those probabilistic models are parsimonious and typically involve only recency and frequency of customer activities. Contrary to BTYD models, a distinctly different class of predictive models for customer repurchase is machine learning. This class of models include a wide variety of computational and statistical learning algorithms. Unlike BTYD models built on low-dimensional inputs and behavioral assumptions, machine learning is more data-driven and excels at fitting predictive models to a large array of features from customer transactions. Using a large online retailing data, we empirically assess the prediction performance of BTYD modeling and machine learning. More importantly, we investigate how the two approaches can complement each other for repurchase prediction. We use the BG/BB model given the discrete and non-contractual problem setting and incorporate BG/BB estimates into high-dimensional Lasso regression. In addition to showing significant improvement over BG/BB and Lasso without BG/BB, the integrated Lasso-BG/BB provides interpretability and identifies BG/BB predictions as the most influential feature among ∼100 predictors. The lately developed CART-artificial neural networks exhibit similar patterns. Robustness checks further show the proposed Lasso-BG/BB outperforms two sophisticated recurrent neural networks, validating the complementarity of machine learning and BTYD modeling. We conclude by articulating how our interdisciplinary integration of the two modeling paradigms contributes to the theory and practice of predictive analytics.
    關聯: European Journal of Operational Research, Vol. 296, No.2, pp.635-651
    資料類型: article
    DOI 連結: https://doi.org/10.1016/j.ejor.2021.04.021
    DOI: 10.1016/j.ejor.2021.04.021
    顯示於類別:[資訊管理學系] 期刊論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    181.pdf1345KbAdobe PDF2253檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋