政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/136050
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 114205/145239 (79%)
造访人次 : 52290430      在线人数 : 443
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 財務管理學系 > 學位論文 >  Item 140.119/136050


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/136050


    题名: 聯準會量化寬鬆政策對美國股債動態條件相關性之影響
    The impact of the Federal Reserve Quantitative Easing on Dynamic Conditional Correlations between US stock and bond
    作者: 李昀
    Lee, Yun
    贡献者: 陳聖賢
    李昀
    Lee, Yun
    关键词: 股債報酬率相關性
    量化寬鬆
    貨幣供給量
    動態條件相關係數模型
    Stock-bond correlations
    Quantitative easing
    Money supply
    DCC-GARCH
    日期: 2021
    上传时间: 2021-07-03 00:39:03 (UTC+8)
    摘要: 股票及債券為投資組合資產配置中兩大常見且重要的金融資產,美國為全球主要金融市場之一,了解美國股債相關性變化並探討影響股債相關性變化之因素,將有助於投資人進行投資組合之資產配置及風險控管。受到2008年金融海嘯影響,美國聯準會於2008年至2014年多次實施量化寬鬆政策來穩定市場流動性並刺激經濟; 2020年為因應Covid–19的衝擊,更進一步實施無限量量化寬鬆政策;我們可以觀察到近年聯準會更加頻繁的透過量化寬鬆政策來穩定金融市場,使市場資金量持續增長。故本研究將探討美國聯準會執行量化寬鬆政策和市場貨幣供給量增長對於股債相關性之影響。

    本研究分為兩個部份,第一部分是利用Engle(2002)動態條件相關係數(DCC-GARCH)模型來探討自2001年至2021年美國股票及債券相關性之變化。研究發現美國股債動態相關係數持續隨時間改變,主要介於-0.3至-0.7之中度負相關,平均動態相關係數達-0.45,顯示適當的配置股票和債券於投資組合中將能有效發揮分散風險的功能。

    第二部分為採用OLS迴歸分析探討2003年至2021年聯準會量化寬鬆政策及市場貨幣供給量對於美國股債相關性之影響。實證結果顯示聯準會之量化寬鬆政策對於股債相關性有顯著負向影響,說明當聯準會執行量化寬鬆政策導致所持有的公債、Agency Debt和Agency MBS增加,股債相關係數會降低(負相關增加),此一現象在QE1和QE2的時候較為明顯;貨幣供給量和股債相關性呈現顯著負相關,貨幣供給量增加可能使市場對未來經濟表現保持樂觀態度、降低要求之風險溢酬,使股價上升、債券價格下滑,股債相關係數下降。
    Stock and bond are two main asset classes in investors’ portfolios. The United State is an important financial market in the world. Therefore, investigating the changes and determinants of the US stock-bond correlations is critical for investors to allocate their assets and control risks. Due to the financial crisis in 2008, the Federal Reserve implemented a series of quantitative easing policy to restore market liquidity and stimulate the economy from 2008 to 2014. In 2020, the Fed announced an unlimited QE to support the financial market affected by the coronavirus pandemic. We can find that the Fed uses QE policy to stabilize the financial market more frequently in recent years, leading to the growth of money supply. This study will discuss impacts of the QE and money supply on the US stock-bond correlations.

    The study is divided into two parts. First of all, I use DCC-GARCH model (Engle, 2002) to build the US dynamic conditional stock-bond correlations from 2001 to 2021. The empirical results show that the US stock-bond correlation coefficient changes over time with an average of -0.45, which means that allocating stock and bond appropriately will effectively diversify the portfolio and minimize the risks. Next, I use OLS regression to investigate the impact of the QE policy and money supply on the US stock-bond correlations. The empirical results show that the QE policy and money supply are important determinants of the US stock-bond correlations. The QE policy has a significantly negative relationship with the US stock-bond correlations, especially during QE1 and QE2. Money supply also has a significantly negative relationship with the US stock-bond correlations.
    參考文獻: 1. 中央銀行(2013)。量化寬鬆貨幣政策。中央銀行理監事會後編印報告,1-33。
    2. 朱美智(2016)。Fed及ECB因應危機措施對其資產負債表之影響。國際金融參考資料,69,42-69。
    3. 張志揚(2012)。美國非傳統貨幣政策之採行及其影響。國際金融參考資料,63,23-46。
    4. 陳旭昇(2013)。時間序列分析--總體經濟與財務金融之應用。台灣:東華。
    5. 廖四郎、林建秀(2018)。美國歷次QE對亞洲各國股匯市波動性研究。財團法人台北外匯市場發展基金會專題研究計畫。
    6. Andersson, M., Krylova, E., and Vähämaa, S. (2008). Why does the correlation between stock and bond returns vary over time? Applied Financial Economics 18(2), 139-151.
    7. Aslandis, Q., and Christainsen, C. (2014). Quantiles of the realized stock-bond correlation and links to the macroeconomy. Journal of Empirical Finance 28, 321-331.
    8. Asgharian, H., Christainsen, C., and Hou, A. J. (2016). Macro-finance determinants of the long run stock bond correlation: the DCC-MIDAS specification. Journal of Finance Econometrics 14(3), 617-642.
    9. Bhattarai, S., Chatterjee, A., and Park W. Y. (2015). Effects of US quantitative easing on emerging market economies. Federal Reserve Bank of Dallas Globalization and Monetary Policy Institute Working Paper No. 255.
    10. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31(3), 307-327.
    11. Bollerslev, T. (1990). Modelling the coherence in short-run nominal exchange rates: a multivariate generalized ARCH model. Review of Economics and Statistics 72(3), 498-505.
    12. Bollerslev, T., Chou, R. Y., and Kroner, K. F. (1992). ARCH modeling in finance: a review of the theory and empirical evidence. Journal of Econometrics 52(1-2), 5–59.
    13. Baele, L., Bekaert, G., and Inghelbrecht, K. (2010). The determinants of stock and bond return comovements. Review of Financial Studies 23(6), 2374–2428.
    14. Cenedese G., and Elard L. (2021). Unconventional monetary policy and the portfolio choice of international mutual funds. Journal of International Money and Finance, forthcoming.
    15. Chaudhuri, K., and Smiles, S. (2004). Stock market and aggregate economic activity: evidence from Australia. Applied Financial Economics 14(2), 121–129.
    16. Connolly R., Stivers, C., and Sun, L. (2005). Stock market uncertainty and the stock-bond return relation. Journal of Financial and Quantitative Analysis 40(1), 161-194.
    17. Dimic, N., Kiviaho, J., Piljak, V., and Äijö, J. (2016). Impact of financial market uncertainty and macroeconomic factors on stock–bond correlation in emerging markets. Research in International Business and Finance 36, 41–51.
    18. Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50(4), 987-1007.
    19. Engle, R. (2002). Dynamic conditional correlation: a simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business & Economic Statistics 20(3), 339-350.
    20. Fang, L., Yu, H., and Li, L. (2017). The effect of economic policy uncertainty on the long-term correlation between U.S. stock and bond markets. Economic Modelling 66, 139–145.
    21. Fang, L., Yu, H., and Huang, Y. (2018). The role of investor sentiment in the long-term correlation between U.S. stock and bond markets. International Review of Economics & Finance 58, 127-139.
    22. Gokmenoglu, K. K., and Hadood, A. A. A. (2020). Impact of US unconventional monetary policy on dynamic stock-bond correlations: portfolio rebalancing and signalling channel effects. Finance Research Letters, forthcoming.
    23. Goldberg, L., and Leonard, D. (2005). What moves sovereign bond markets? The effects of economic news on U.S. and German yields. Current Issues in Economics and Finance 9(9).
    24. Humpe, A., and McMillan, D. (2020). The Covid-19 stock market puzzle and money supply in the US. Economics Bulletin 40(4), 3104-3110.
    25. Kim, S. J., Moshirian, F., and Wu, E. (2005). Evolution of international stock and bond market integration: influence of the European monetary union. Journal of Banking & Finance 30, 1507-1534.
    26. Kryzanowski, L., Zhang, J., and Zhong, R. (2017). Cross-financial-market correlations and quantitative easing. Finance Research Letters 20, 13–21.
    27. McMillan, D. G. (2017). Does money supply growth contain predictive power for stock returns? evidence and explanation. International Journal of Banking, Accounting and Finance 8(2), 119-145.
    28. Pícha, V. (2017). Effect of money supply on the stock market. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 65, 465-472.
    29. Ruman, A. M. (2021). Stock market implications of Fed`s balance sheet size. Journal of Economic Studies, forthcoming.
    30. Skintzi, V. D. (2019). Determinants of stock-bond market comovement in the Eurozone under model uncertainty. International Review of Financial Analysis 61, 20–28.
    31. Williams, J. C. (2011). Unconventional monetary policy: lessons from the past three years. Paper presented at the Swiss National Bank Research Conference, Zurich, Switzerland.
    32. Yang, J., Zhou, Y., and Wang, Z. (2009). The stock–bond correlation and macroeconomic conditions: one and a half centuries of evidence. Journal of Banking & Finance 33, 670-680.
    描述: 碩士
    國立政治大學
    財務管理學系
    108357006
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0108357006
    数据类型: thesis
    DOI: 10.6814/NCCU202100565
    显示于类别:[財務管理學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    700601.pdf2225KbAdobe PDF20检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈