政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/135795
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114105/145137 (79%)
造訪人次 : 52146904      線上人數 : 562
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/135795


    題名: Processing Framework for Landslide Detection Based on Synthetic Aperture Radar (SAR) Intensity-Image Analysis
    作者: 林士淵
    Lin, Shih-Yuan
    Lin, Cheng-Wei
    Gasselt, Stephan van
    貢獻者: 地政系
    關鍵詞: remote sensing; synthetic aperture radar; landslides; natural hazards
    日期: 2021-02
    上傳時間: 2021-06-16 14:50:14 (UTC+8)
    摘要: We present an object-based image analysis (OBIA) approach to identify temporal changes in radar-intensity images and to locate land-cover changes caused by mass-wasting processes at small to large scales, such as landslides. Our approach is based upon change detection in SAR intensity images that remain in their original imaging coordinate system rather than being georeferenced and map-projected, in order to reduce accumulation of filtering artifacts and other unwanted effects that would deteriorate the detection efficiency. Intensity images in their native slant-range coordinate frame allow for a consistent level of detection of land-cover changes. By analyzing intensity images, a much faster response can be achieved and images can be processed as soon as they are made publicly available. In this study, OBIA was introduced to systematically and semiautomatically detect landslides in image pairs with an overall accuracy of at least 60% when compared to in-situ landslide inventory data. In this process, the OBIA feature extraction component was supported by derived data from a polarimetric decomposition as well as by texture indices derived from the original image data. The results shown here indicate that most of the landslide events could be detected when compared to a closer visual inspection and to established inventories, and that the method could therefore be considered as a robust detection tool. Significant deviations are caused by the limited geometric resolution when compared to field data and by an additional detection of stream-related sediment redeposition in our approach. This overdetection, however, turns out to be potentially beneficial for assessing the risk situation after landslide events.
    關聯: Remote Sensing, Vol.13, No.4, 644
    資料類型: article
    DOI 連結: https://doi.org/10.3390/rs13040644
    DOI: 10.3390/rs13040644
    顯示於類別:[地政學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    80.pdf23620KbAdobe PDF2305檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋