English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51720905      Online Users : 649
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/134853


    Title: Developing a Computer-Mediated Communication Competence Forecasting Model Based on Learning Behavior Features
    Authors: 陳志銘
    Chen, Chih-Ming 
    LianYing-You
    Contributors: 圖檔所
    Keywords: Computer-mediated communication;Cooperative/collaborative learning;Evaluation methodologies;Interactive learning environments
    Date: 2020-01
    Issue Date: 2021-04-22 15:32:50 (UTC+8)
    Abstract: This study aims to develop a computer-mediated communication (CMC) competence forecasting model (CMCCFM) based on five well-known machine learning schemes- linear regression algorithm, M5P algorithm, sequence minimum optimization regression algorithm, convolutional neural network algorithm, and multi-layer perceptron algorithm and learning behavior features collected by a micro-behavior recorder from the learners who used a web-based collaborative problem-based learning (WCPBL) system to perform a problem-solving learning activity. To explore the big data generated from a huge amount of learners’ micro-behaviors as the user behavior features for establishing a good CMCCFM, this study developed the learning micro-behavior classification structure according to the collected data features and the concepts of CMC competence. Additionally, an effective method for constructing a CMCCFM with high correctness and stableness was proposed and examined its forecasting effectiveness. The effects of learning situations on the prediction accuracy of CMCCFM were also explored. Analytical results show that the CMCCFM developed by the five considered machine learning schemes all have good prediction performance to some degree. Among the five considered machine learning schemes, the sequence minimum optimization regression algorithm with the model complexity parameter set to 0.1 has the highest prediction accuracy and stability. The key features that influence the prediction accuracy most are “communication behavior” and “communication objective.” Moreover, the development of the CMCCFM must consider the learning situations and learners’ traits, such as discussion trait and familiar degree with the problem-solving subject, because those would affect the prediction accuracy of the developed CMCCFM.
    Relation: Computers & Education: Artificial Intelligence, Volume 1, 2020, 100004
    Data Type: article
    DOI 連結: https://doi.org/10.1016/j.caeai.2020.100004
    DOI: 10.1016/j.caeai.2020.100004
    Appears in Collections:[圖書資訊與檔案學研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    193.pdf1853KbAdobe PDF2344View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback