English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114014/145046 (79%)
Visitors : 52055754      Online Users : 455
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/134090


    Title: 甜菜鹼對順鉑引發的小鼠神經病理性疼痛之止痛作用及機制探討
    Analgesic effects and mechanisms of betaine on cisplatin-induced neuropathic pain in mice
    Authors: 羅玉珠
    Luo, Yu-Zhu
    Contributors: 詹銘煥
    陳慧諴

    Chan, Ming-Huan
    Chen, Hwei-Hsien

    羅玉珠
    Luo, Yu-Zhu
    Keywords: 甜菜鹼
    神經病理性疼痛
    順鉑
    NMDA
    Betaine
    Neuropathic pain
    Cisplatin
    NMDA
    Date: 2021
    Issue Date: 2021-03-02 14:34:17 (UTC+8)
    Abstract: N-methyl-D-aspartate (NMDA)受體調節劑可以緩解神經病理性疼痛。甜菜鹼 亦稱為三甲基甘胺酸 (Trimethylglycine),具調節 NMDA 受體的作用。本研究採 用順鉑引發神經病理性疼痛的小鼠模型來研究甜菜鹼的鎮痛效果和作用機轉。實 驗採用腹腔注射 (i.p.)、脊髓鞘內注射 (i.t.)、腦室內注射 (i.c.v.) 以及通過於 medial prefrontal cortex 以及通過腦部埋管進行前額葉皮質(mPFC)埋管進行微量 注射藥物後,使用 Von Frey 測試順鉑處理後之小鼠機械性觸覺反應其疼痛程度。 實驗結果顯示,甜菜鹼以腹腔、脊髓鞘內、腦室內注射以及腦內微注射到 mPFC 的方式皆能緩解順鉑引發的小鼠神經病理性疼痛。在其作用機制上,發現以腦室 內注射 NMDA 受體抑制劑 7-chlorokynurenic acid (7-CK)可以抑制甜菜鹼緩解疼 痛的效果,但是以脊髓鞘內注射 7-CK 的方式無法抑制腹腔注射甜菜鹼緩解疼痛 的效果。微注射 7-CK 到 mPFC 可以抑制微注射甜菜鹼到 mPFC 緩解疼痛的效 果,但是無法抑制腹腔注射甜菜鹼緩解疼痛的效果。以腹腔、脊髓鞘內.或腦室內 注射 α2A 腎上腺素受體拮抗劑 yohimbine 的方式能抑制甜菜鹼緩解疼痛的作用。 另外使用管餵 β 受體拮抗劑 propranolol 的方式也能抑制甜菜鹼緩解疼痛的作用。 以腹腔、脊髓鞘內或腦室內注射的方式給予 5-HT1A 受體拮抗劑 WAY100635 能 抑制甜菜鹼緩解疼痛的作用。以脊髓鞘內注射 5-HT7 受體拮抗劑 SB269970 的方 式能抑制甜菜鹼緩解疼痛的作用。但以腦室內注射 SB269970 的方式對甜菜鹼緩 解疼痛的作用沒有影響。以脊髓鞘內或是腦室內注射的方式給予 α7-nAChR 受體 拮抗劑 MLA 能抑制甜菜鹼緩解疼痛的作用。另以脊髓鞘內注射和腦室內注射 α4β2-nAChR 受體拮抗劑 DHβE 能抑制甜菜鹼緩解疼痛的作用。以腹腔、脊髓鞘 內或腦室內注射的方式給予鴉片類受體拮抗劑 naloxone 能抑制甜菜鹼緩解疼痛 的作用。本實驗結果證實甜菜鹼有緩解神經病理性疼痛的作用。其作用位置至少 包含 mPFC 和脊髓,參與甜菜鹼緩解神經病理性疼痛的調控因子包含 NMDA、 正腎上腺素、血清素、乙醯膽鹼以及鴉片類受體。因此,活化下行性疼痛抑制路 徑和脊髓的調節在甜菜鹼緩解順鉑引發的神經病理性疼痛中均扮演重要的角色。
    N-methyl-D-aspartate (NMDA) receptor modulators can relieve neuropathic pain. Betaine, also known as trimethylglycine, can regulate NMDA receptor. In this study, a mouse model of cisplatin-induced neuropathic pain was used to study the analgesic effect and mechanism of betaine. After intraperitoneal injection (i.p.), intrathecal injection (i.t.), intraventricular injection (i.c.v.) and micro injection into medial prefrontal cortex (mPFC), von Frey test was used to examine the paw withdrawal threshold (PWT) in the cisplatin-treated mice. The results showed that betaine could alleviate the neuropathic pain induced by cisplatin in mice by i.p., i.t., and i.c.v. injection and microinjection into mPFC. To determine the mechanism of action of betaine, NMDA receptor inhibitor 7-chlorokynurenic acid (7-CK), ) by i.c.v. injection but not by i.t. injection, could inhibit the antiallodynic effect of betaine (i.p.). Microinjection of 7-CK into mPFC could inhibit the pain relief effect of microinjection of betaine into mPFC, but could not inhibit the antiallodynic effect of i.p. injection of betaine. In addition, yohimbine, an α2-adrenoceptor antagonist (i.p., i.t. or i.c.v. injection) could inhibit the analgesic effect of betaine. The antiallodynic effect of betaine was also inhibited by β-adrenoceptor antagonist propranolol. WAY100635, a 5- HT1A receptor antagonist, can inhibit the pain relieving effect of betaine by i.p., i.t. or i.c.v. injection. 5-HT7 receptor antagonist SB269970 inhibited the analgesic effect of betaine by i.t. injection, whereas, i.c.v. injection of SB269970 had no effect. In addition, i.t. injection and i.c.v. injection of the α7-nAChR antagonist MLA and the α4β2-nAChR antagonist DHβE could inhibit the analgesic effect of betaine. Naloxone, an opioid receptor antagonist, could inhibit the antiallodynic effect of betaine by i.p., i.t. or i.c.v. injection. The results showed that betaine could relieve neuropathic pain. The regulatory factors involved in the alleviation of neuropathic pain by betaine include NMDA, adrenergic, serotonergic, cholinergic and opioid receptors. Therefore, activation of descending pain inhibition pathway and regulation of spinal cord play a role in betaine alleviating cisplatin-induced neuropathic pain.
    Reference: Alaedini, A., Xiang, Z., Kim, H., Sung, Y.-J., & Latov, N. (2008). Up-regulation of apoptosis and regeneration genes in the dorsal root ganglia during cisplatin treatment. Experimental Neurology, 210(2), 368–374.
    Alderden, R. A., Hall, M. D., & Hambley, T. W. (2006). The Discovery and Development of Cisplatin. Journal of Chemical Education, 83(5), 728.
    Alles, S. R. A., & Smith, P. A. (2018). Etiology and Pharmacology of Neuropathic Pain. Pharmacological Reviews, 70(2), 315–347.
    Aloe, L., Manni, L., Properzi, F., De Santis, S., & Fiore, M. (2000). Evidence that nerve growth factor promotes the recovery of peripheral neuropathy induced in mice by Cisplatin: Behavioral, structural and biochemical analysis. Autonomic Neuroscience, 86(1–2), 84–93.
    Anand, U., Otto, W. R., & Anand, P. (2010). Sensitization of Capsaicin and Icilin Responses in Oxaliplatin Treated Adult Rat DRG Neurons. Molecular Pain, 6, 1744-8069-6–82.
    Apfel, S. C., Arezzo, J. C., Lipson, L., & Kessler, J. A. (1992). Nerve growth factor prevents experimental cisplatin neuropathy. Annals of Neurology, 31(1), 76–80.
    Areti, A., Yerra, V. G., Naidu, V., & Kumar, A. (2014). Oxidative stress and nerve damage: Role in chemotherapy induced peripheral neuropathy. Redox Biology, 2, 289–295.
    Authier, N. (2003). An animal model of nociceptive peripheral neuropathy following repeated cisplatin injections. Experimental Neurology, 182(1), 12–20.
    Authier, Nicolas, Fialip, J., Eschalier, A., & Coudoré, F. (2000). Assessment of allodynia and hyperalgesia after cisplatin administration to rats. Neuroscience Letters, 291(2), 73–76.
    Baron, R., Binder, A., & Wasner, G. (2010a). Neuropathic pain: Diagnosis, pathophysiological mechanisms, and treatment. The Lancet Neurology, 9(8), 807–819.
    Baron, R., Binder, A., & Wasner, G. (2010b). Neuropathic pain: Diagnosis, pathophysiological mechanisms, and treatment. The Lancet Neurology, 9(8), 807–819.
    Bennett, M. I., Rayment, C., Hjermstad, M., Aass, N., Caraceni, A., & Kaasa, S. (2012). Prevalence and aetiology of neuropathic pain in cancer patients: A systematic review: Pain, 153(2), 359–365.
    Brenchat, A., Nadal, X., Romero, L., Ovalle, S., Muro, A., Sánchez-Arroyos, R., Portillo-Salido, E., Pujol, M., Montero, A., Codony, X., Burgueño, J., Zamanillo, D., Hamon, M., Maldonado, R., & Vela, J. M. (2010). Pharmacological activation of 5-HT7 receptors reduces nerve injury-induced mechanical and thermal hypersensitivity. Pain, 149(3), 483–494.
    Carozzi, V. A., Chiorazzi, A., Canta, A., Lapidus, R. G., Slusher, B. S., Wozniak, K. M., & Cavaletti, G. (2010). Glutamate Carboxypeptidase Inhibition Reduces the Severity of Chemotherapy-Induced Peripheral Neurotoxicity in Rat. Neurotoxicity Research, 17(4), 380–391.
    Cepeda, V., Fuertes, M., Castilla, J., Alonso, C., Quevedo, C., & Perez, J. (2007). Biochemical Mechanisms of Cisplatin Cytotoxicity. Anti-Cancer Agents in Medicinal Chemistry, 7(1), 3–18.
    Chaplan, S. R., Malmberg, A. B., & Yaksh, T. L. (1997). Efficacy of spinal NMDA receptor antagonism in formalin hyperalgesia and nerve injury evoked allodynia in the rat. The Journal of Pharmacology and Experimental Therapeutics, 280(2), 829–838.
    Choi, S.-R., Moon, J.-Y., Roh, D.-H., Yoon, S.-Y., Kwon, S.-G., Choi, H.-S., Kang, S.-Y., Han, H.-J., Beitz, A. J., & Lee, J.-H. (2017). Spinal D-Serine Increases PKC-Dependent GluN1 Phosphorylation Contributing to the Sigma-1 Receptor-Induced Development of Mechanical Allodynia in a Mouse Model of Neuropathic Pain. The Journal of Pain, 18(4), 415–427.
    Cohen, S. P., & Mao, J. (2014). Neuropathic pain: Mechanisms and their clinical implications. BMJ, 348(feb05 6), f7656–f7656.
    Craig, S. A. S. (2004). Betaine in human nutrition. The American Journal of Clinical Nutrition, 80(3), 539–549.
    Descoeur, J., Pereira, V., Pizzoccaro, A., Francois, A., Ling, B., Maffre, V., Couette, B., Busserolles, J., Courteix, C., Noel, J., Lazdunski, M., Eschalier, A., Authier, N., & Bourinet, E. (2011). Oxaliplatin‐induced cold hypersensitivity is due to remodelling of ion channel expression in nociceptors. EMBO Molecular Medicine, 3(5), 266–278.
    Devor, M. (2009). Ectopic discharge in Aβ afferents as a source of neuropathic pain. Experimental Brain Research, 196(1), 115–128.
    Eijkelkamp, N., Linley, J. E., Baker, M. D., Minett, M. S., Cregg, R., Werdehausen, R., Rugiero, F., & Wood, J. N. (2012). Neurological perspectives on voltage-gated sodium channels. Brain, 135(9), 2585–2612.
    Farquhar-Smith, P. (2011). Chemotherapy-induced neuropathic pain: Current Opinion in Supportive and Palliative Care, 5(1), 1–7.
    Fields, H. L., Rowbotham, M., & Baron, R. (1998). Postherpetic Neuralgia: Irritable Nociceptors and Deafferentation. Neurobiology of Disease, 5(4), 209–227.
    Fridman, O. (1999). [Hyperhomocysteinemia: Atherothrombosis and neurotoxicity]. Acta Physiologica, Pharmacologica Et Therapeutica Latinoamericana: Organo De La Asociacion Latinoamericana De Ciencias Fisiologicas Y [de] La Asociacion Latinoamericana De Farmacologia, 49(1), 21–30.
    Gao, X., Wang, Y., Randell, E., Pedram, P., Yi, Y., Gulliver, W., & Sun, G. (2016). Higher Dietary Choline and Betaine Intakes Are Associated with Better Body Composition in the Adult Population of Newfoundland, Canada. PLOS ONE, 11(5),
    Ghoreishi-Haack, N., Priebe, J. M., Aguado, J. D., Colechio, E. M., Burgdorf, J. S., Bowers, M. S., Cearley, C. N., Khan, M. A., & Moskal, J. R. (2018). NYX-2925 Is a Novel N -Methyl-d-Aspartate Receptor Modulator that Induces Rapid and Long-Lasting Analgesia in Rat Models of Neuropathic Pain. Journal of Pharmacology and Experimental Therapeutics, 366(3), 485–497.
    Gjerstad, J., Tjølsen, A., & Hole, K. (1996). The effect of 5-HT1A receptor stimulation on nociceptive dorsal horn neurones in rats. European Journal of Pharmacology, 318(2–3), 315–321.
    Guindon, J., Deng, L., Fan, B., Wager-Miller, J., & Hohmann, A. G. (2014). Optimization of a Cisplatin Model of Chemotherapy-Induced Peripheral Neuropathy in Mice: Use of Vitamin C and Sodium Bicarbonate Pretreatments to Reduce Nephrotoxicity and Improve Animal Health Status. Molecular Pain, 10, 1744-8069-10–56.
    Han, Y., & Smith, M. T. (2013). Pathobiology of cancer chemotherapy-induced peripheral neuropathy (CIPN). Frontiers in Pharmacology, 4.
    Hassanpour, S., Rezaei, H., & Razavi, S. M. (2020). Anti-nociceptive and antioxidant activity of betaine on formalin- and writhing tests induced pain in mice. Behavioural Brain Research, 390, 112699.
    Heidari, R., Niknahad, H., Sadeghi, A., Mohammadi, H., Ghanbarinejad, V., Ommati, M. M., Hosseini, A., Azarpira, N., Khodaei, F., Farshad, O., Rashidi, E., Siavashpour, A., Najibi, A., Ahmadi, A., & Jamshidzadeh, A. (2018). Betaine treatment protects liver through regulating mitochondrial function and counteracting oxidative stress in acute and chronic animal models of hepatic injury. Biomedicine & Pharmacotherapy,
    Henriksen, G., & Willoch, F. (2008). Imaging of opioid receptors in the central nervous system. Brain, 131(5), 1171–1196.
    Hildebrand, M. E., Xu, J., Dedek, A., Li, Y., Sengar, A. S., Beggs, S., Lombroso, P. J., & Salter, M. W. (2016). Potentiation of Synaptic GluN2B NMDAR Currents by Fyn Kinase Is Gated through BDNF-Mediated Disinhibition in Spinal Pain Processing. Cell Reports, 17(10), 2753–2765.
    Huang, Q.-C., Xu, Z.-R., Han, X.-Y., & Li, W.-F. (2006). Changes in hormones, growth factor and lipid metabolism in finishing pigs fed betaine. Livestock Science, 105(1–3), 78–85.
    Hughes, S., Hickey, L., Donaldson, L. F., Lumb, B. M., & Pickering, A. E. (2015). Intrathecal reboxetine suppresses evoked and ongoing neuropathic pain behaviours by restoring spinal noradrenergic inhibitory tone. Pain, 156(2), 328–334.
    Jensen, T. S., & Finnerup, N. B. (2014a). Allodynia and hyperalgesia in neuropathic pain: Clinical manifestations and mechanisms. The Lancet Neurology, 13(9), 924–935.
    Jensen, T. S., & Finnerup, N. B. (2014b). Allodynia and hyperalgesia in neuropathic pain: Clinical manifestations and mechanisms. The Lancet Neurology, 13(9), 924–935.
    Kaur, G., Jaggi, A., & Singh, N. (2014). Exploring the potential effect of Ocimum sanctum in vincristine-induced neuropathic pain in rats. Journal of Brachial Plexus and Peripheral Nerve Injury, 05(01), e3–e11.
    Kharbanda, K. K., Todero, S. L., King, A. L., Osna, N. A., McVicker, B. L., Tuma, D. J., Wisecarver, J. L., & Bailey, S. M. (2012). Betaine Treatment Attenuates Chronic Ethanol-Induced Hepatic Steatosis and Alterations to the Mitochondrial Respiratory Chain Proteome. International Journal of Hepatology, 2012, 1–10.
    Knight, L. S., Piibe, Q., Lambie, I., Perkins, C., & Yancey, P. H. (2017). Betaine in the Brain: Characterization of Betaine Uptake, its Influence on Other Osmolytes and its Potential Role in Neuroprotection from Osmotic Stress. Neurochemical Research, 42(12), 3490–3503.
    Kohno, T., Ji, R.-R., Ito, N., Allchorne, A. J., Befort, K., Karchewski, L. A., & Woolf, C. J. (2005). Peripheral axonal injury results in reduced μ opioid receptor pre- and post-synaptic action in the spinal cord☆: Pain, 117(1), 77–87.
    Koistinen, V. M., Kärkkäinen, O., Borewicz, K., Zarei, I., Jokkala, J., Micard, V., Rosa-Sibakov, N., Auriola, S., Aura, A.-M., Smidt, H., & Hanhineva, K. (2019). Contribution of gut microbiota to metabolism of dietary glycine betaine in mice and in vitro colonic fermentation. Microbiome, 7(1), 103.
    Krell, H. V., Leuchter, A. F., Cook, I. A., & Abrams, M. (2005). Evaluation of Reboxetine, a Noradrenergic Antidepressant, for the Treatment of Fibromyalgia and Chronic Low Back Pain. Psychosomatics, 46(5), 379–384.
    Lee, M., Manders, T. R., Eberle, S. E., Su, C., D’amour, J., Yang, R., Lin, H. Y., Deisseroth, K., Froemke, R. C., & Wang, J. (2015). Activation of Corticostriatal Circuitry Relieves Chronic Neuropathic Pain. Journal of Neuroscience, 35(13), 5247–5259.
    Lee, M.-Y., Lin, Y.-R., Tu, Y.-S., Tseng, Y. J., Chan, M.-H., & Chen, H.-H. (2017). Effects of sarcosine and N, N-dimethylglycine on NMDA receptor-mediated excitatory field potentials. Journal of Biomedical Science, 24(1), 18.
    Lien, Y. H. (1995). Role of organic osmolytes in myelinolysis. A topographic study in rats after rapid correction of hyponatremia. Journal of Clinical Investigation, 95(4), 1579–1586.
    Lin, J.-C., Lee, M.-Y., Chan, M.-H., Chen, Y.-C., & Chen, H.-H. (2016). Betaine enhances antidepressant-like, but blocks psychotomimetic effects of ketamine in mice. Psychopharmacology, 233(17), 3223–3235.
    Lipton, S. A., Kim, W. K., Choi, Y. B., Kumar, S., D’Emilia, D. M., Rayudu, P. V., Arnelle, D. R., & Stamler, J. S. (1997). Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor. Proceedings of the National Academy of Sciences of the United States of America, 94(11), 5923–5928.
    Liu, M., & Wood, J. N. (2011). The Roles of Sodium Channels in Nociception: Implications for Mechanisms of Neuropathic Pain. Pain Medicine, 12(suppl 3), S93–S99.
    Mannelli, L., Micheli, L., Crocetti, L., Giovannoni, M., Vergelli, C., & Ghelardini, C. (2016). α 2 Adrenoceptor: A Target for Neuropathic Pain Treatment. Mini-Reviews in Medicinal Chemistry, 17(2), 95–107.
    Meacham, K., Shepherd, A., Mohapatra, D. P., & Haroutounian, S. (2017). Neuropathic Pain: Central vs. Peripheral Mechanisms. Current Pain and Headache Reports, 21(6), 28.
    Mickle, A. D., Shepherd, A. J., & Mohapatra, D. P. (2015). Sensory TRP Channels. In Progress in Molecular Biology and Translational Science (Vol. 131, pp. 73–118). Elsevier.
    Mihara, Y., Egashira, N., Sada, H., Kawashiri, T., Ushio, S., Yano, T., Ikesue, H., & Oishi, R. (2011). Involvement of Spinal NR2B-Containing NMDA Receptors in Oxaliplatin-Induced Mechanical Allodynia in Rats. Molecular Pain, 7, 1744-8069-7–8.
    Millan, M. J. (2002). Descending control of pain. Progress in Neurobiology, 66(6), 355–474.
    Millecamps, M., Centeno, M. V., Berra, H. H., Rudick, C. N., Lavarello, S., Tkatch, T., & Apkarian, V. A. (2007). D-Cycloserine reduces neuropathic pain behavior through limbic NMDA-mediated circuitry ☆. Pain, 132(1), 108–123.
    Miraucourt, L. S., Dallel, R., & Voisin, D. L. (2007). Glycine Inhibitory Dysfunction Turns Touch into Pain through PKCgamma Interneurons. PLoS ONE, 2(11), e1116.
    Moolenaar, S. H., Poggi-Bach, J., Engelke, U. F., Corstiaensen, J. M., Heerschap, A., de Jong, J. G., Binzak, B. A., Vockley, J., & Wevers, R. A. (1999). Defect in dimethylglycine dehydrogenase, a new inborn error of metabolism: NMR spectroscopy study. Clinical Chemistry, 45(4), 459–464.
    Morrison, G., Asiedu, M. N., Priebe, J. M., Dunning, J., Ghoreishi-Haack, N., Kroes, R. A., Bowers, M. S., Barth, A. L., Cearley, C. N., & Moskal, J. R. (2020). The NMDAR modulator NYX-2925 alleviates neuropathic pain via a Src-dependent mechanism in the mPFC. Neurobiology of Pain, 7, 100039.
    Naser, P. V., & Kuner, R. (2018). Molecular, Cellular and Circuit Basis of Cholinergic Modulation of Pain. Neuroscience, 387, 135–148.
    Ohnishi, T., Balan, S., Toyoshima, M., Maekawa, M., Ohba, H., Watanabe, A., Iwayama, Y., Fujita, Y., Tan, Y., Hisano, Y., Shimamoto-Mitsuyama, C., Nozaki, Y., Esaki, K., Nagaoka, A., Matsumoto, J., Hino, M., Mataga, N., Hayashi-Takagi, A., Hashimoto, K., … Yoshikawa, T. (2019). Investigation of betaine as a novel psychotherapeutic for schizophrenia. EBioMedicine, 45, 432–446.
    Ong, W.-Y., Stohler, C. S., & Herr, D. R. (2019). Role of the Prefrontal Cortex in Pain Processing. Molecular Neurobiology, 56(2), 1137–1166.
    Park, M. J., Kim, S. R., Huh, H., Jung, J. H., & Kim, Y. C. (1994). Betaine attenuates glutamate-induced neurotoxicity in primary cultured brain cells. Archives of Pharmacal Research, 17(5), 343–347.
    Park, S. B., Goldstein, D., Krishnan, A. V., Lin, C. S.-Y., Friedlander, M. L., Cassidy, J., Koltzenburg, M., & Kiernan, M. C. (2013). Chemotherapy-induced peripheral neurotoxicity: A critical analysis: CIPN: A Critical Analysis. CA: A Cancer Journal for Clinicians, 63(6), 419–437.
    Polo, S., Díaz, A. F., Gallardo, N., Leánez, S., Balboni, G., & Pol, O. (2019). Treatment With the Delta Opioid Agonist UFP-512 Alleviates Chronic Inflammatory and Neuropathic Pain: Mechanisms Implicated. Frontiers in Pharmacology, 10, 283.
    Porreca, F., Lai, J., Bian, D., Wegert, S., Ossipov, M. H., Eglen, R. M., Kassotakis, L., Novakovic, S., Rabert, D. K., Sangameswaran, L., & Hunter, J. C. (1999). A comparison of the potential role of the tetrodotoxin-insensitive sodium channels, PN3/SNS and NaN/SNS2, in rat models of chronic pain. Proceedings of the National Academy of Sciences, 96(14), 7640–7644.
    Pryor, J. L., Craig, S. A., & Swensen, T. (2012). Effect of betaine supplementation on cycling sprint performance. Journal of the International Society of Sports Nutrition, 9(1), 12.
    Radzicki, D., Pollema-Mays, S. L., Sanz-Clemente, A., & Martina, M. (2017). Loss of M1 Receptor Dependent Cholinergic Excitation Contributes to mPFC Deactivation in Neuropathic Pain. The Journal of Neuroscience, 37(9), 2292–2304.
    Rice, A. S. C., Smith, B. H., & Blyth, F. M. (2016). Pain and the global burden of disease: PAIN, 157(4), 791–796.
    Rosenberg, B., Van Camp, L., & Krigas, T. (1965). Inhibition of Cell Division in Escherichia coli by Electrolysis Products from a Platinum Electrode. Nature, 205(4972), 698–699.
    Sadosky, A., Parsons, B., Schaefer, C., Mann, R., Daniel, S., Nalamachu, S., Stacey, B. R., Nieshoff, E., Tuchman, M., & Anschel, A. (2013). Economic and humanistic burden of post-trauma and post-surgical neuropathic pain among adults in the United States. Journal of Pain Research, 459.
    Scholz, J., Finnerup, N. B., Attal, N., Aziz, Q., Baron, R., Bennett, M. I., Benoliel, R., Cohen, M., Cruccu, G., Davis, K. D., Evers, S., First, M., Giamberardino, M. A., Hansson, P., Kaasa, S., Korwisi, B., Kosek, E., Lavandʼhomme, P., Nicholas, M., … Treede, R.-D. (2019). The IASP classification of chronic pain for ICD-11: Chronic neuropathic pain. PAIN, 160(1), 53–59.
    Schwahn, B. C., Hafner, D., Hohlfeld, T., Balkenhol, N., Laryea, M. D., & Wendel, U. (2003). Pharmacokinetics of oral betaine in healthy subjects and patients with homocystinuria: Betaine kinetics. British Journal of Clinical Pharmacology, 55(1), 6–13.
    Slow, S., Lever, M., Chambers, S. T., & George, P. M. (2009). Plasma dependent and independent accumulation of betaine in male and female rat tissues. Physiological Research, 58(3), 403–410.
    Slow, Sandy, Donaggio, M., Cressey, P. J., Lever, M., George, P. M., & Chambers, S. T. (2005). The betaine content of New Zealand foods and estimated intake in the New Zealand diet. Journal of Food Composition and Analysis, 18(6), 473–485.
    Smith, E. St. J., & Lewin, G. R. (2009). Nociceptors: A phylogenetic view. Journal of Comparative Physiology A, 195(12), 1089–1106. Sudo, R. T., Hayashida, K., Santos, A. N., Kawatani, M., Monteiro, C. E., Moreira, R. D., Trachez, M. M., Montes, G. C., & Zapata-Sudo, G. (2018). Novel agonist of α4β2* neuronal nicotinic receptor with antinociceptive efficacy in rodent models of acute and chronic pain. Journal of Pain Research, Volume 11, 2453–2462.
    Ta, L. E., Low, P. A., & Windebank, A. J. (2009). Mice with Cisplatin and Oxaliplatin-Induced Painful Neuropathy Develop Distinct Early Responses to Thermal Stimuli. Molecular Pain, 5, 1744-8069-5–9.
    Taylor, B. K., & Westlund, K. N. (2017). The noradrenergic locus coeruleus as a chronic pain generator: Is the LC a Neuropathic Pain Generator? Journal of Neuroscience Research, 95(6), 1336–1346.
    Tredici, G., Tredici, S., Fabbrica, D., Minoia, C., & Cavaletti, G. (1998). Experimental cisplatin neuronopathy in rats and the effect of retinoic acid administration. Journal of Neuro-Oncology, 36(1), 31–40.
    Trepanowski, J. F., Farney, T. M., McCarthy, C. G., Schilling, B. K., Craig, S. A., & Bloomer, R. J. (2011). The Effects of Chronic Betaine Supplementation on Exercise Performance, Skeletal Muscle Oxygen Saturation and Associated Biochemical Parameters in Resistance Trained Men: Journal of Strength and Conditioning Research, 25(12), 3461–3471.
    van Hecke, O., Austin, S. K., Khan, R. A., Smith, B. H., & Torrance, N. (2014). Neuropathic pain in the general population: A systematic review of epidemiological studies: Pain, 155(4), 654–662.
    Verdú, E., Vilches, J. J., Rodríguez, F. J., Ceballos, D., Valero, A., & Navarro, X. (1999). Physiological and immunohistochemical characterization of cisplatin-induced neuropathy in mice. Muscle & Nerve, 22(3), 329–340.
    Vos, T., Barber, R. M., Bell, B., Bertozzi-Villa, A., Biryukov, S., Bolliger, I., Charlson, F., Davis, A., Degenhardt, L., Dicker, D., Duan, L., Erskine, H., Feigin, V. L., Ferrari, A. J., Fitzmaurice, C., Fleming, T., Graetz, N., Guinovart, C., Haagsma, J., … Murray, C. J. (2015). Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. The Lancet, 386(9995), 743–800.
    Wang, H., Li, S., Fang, S., Yang, X., & Feng, J. (2018). Betaine Improves Intestinal Functions by Enhancing Digestive Enzymes, Ameliorating Intestinal Morphology, and Enriching Intestinal Microbiota in High-salt stressed Rats. Nutrients, 10(7), 907.
    Wang, H.-S., Yu, G., Wang, Z.-T., Yi, S.-P., Su, R.-B., & Gong, Z.-H. (2016). Changes in VGLUT1 and VGLUT2 expression in rat dorsal root ganglia and spinal cord following spared nerve injury. Neurochemistry International, 99, 9–15.
    Wang, Y., Jiang, Q., Xia, Y., Huang, Z., & Huang, C. (2018). Involvement of α7nAChR in electroacupuncture relieving neuropathic pain in the spinal cord of rat with spared nerve injury. Brain Research Bulletin, 137, 257–264.
    Xiao, W., Boroujerdi, A., Bennett, G. J., & Luo, Z. D. (2007). Chemotherapy-evoked painful peripheral neuropathy: Analgesic effects of gabapentin and effects on expression of the alpha-2-delta type-1 calcium channel subunit. Neuroscience, 144(2), 714–720.
    Zhao, G., He, F., Wu, C., Li, P., Li, N., Deng, J., Zhu, G., Ren, W., & Peng, Y. (2018). Betaine in Inflammation: Mechanistic Aspects and Applications. Frontiers in Immunology, 9, 1070.
    Description: 碩士
    國立政治大學
    神經科學研究所
    106754002
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0106754002
    Data Type: thesis
    DOI: 10.6814/NCCU202100381
    Appears in Collections:[神經科學研究所] 學位論文

    Files in This Item:

    There are no files associated with this item.



    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback