English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52562238      Online Users : 901
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/133429
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/133429


    Title: SVM在解非線性方程式的應用
    The application of SVM in solving nonlinear equations
    Authors: 林雨鵷
    Lin, Yu-Yuan
    Contributors: 曾正男
    吳柏林

    Zeng, Zheng-Nan
    Wu, Bo-Lin

    林雨鵷
    Lin, Yu-Yuan
    Keywords: 非線性方程式
    支持向量機
    Nonlinear equations
    SVM
    Date: 2020
    Issue Date: 2021-01-04 11:09:49 (UTC+8)
    Abstract: 解非線性方程式雖然有許多數學標準方法,但是在高維度的求解以及有無窮多解的問題上,現有的方法可以計算出來的結果仍然非常有限,我們希望可以提出一個簡單快速的方法,可以了解無窮多解的分布狀況,並且在局部區域也能找出精確解,同時希望對這些解有可視化的了解。我們利用SVM的特性開發了一個新的方法,可以同時達到以上目標。
    There are many standard mathematical methods for solving nonlinear equations. But when it comes to equations in high dimension with infinite solutions, the results from current methods are quite limited. We present a simple fast way which could tell the distribution of these infinite solutions and is capable of finding accurate approximations. In the same time, we also want to have a visual understanding about the roots. Using the features of SVM, we have developed a new method that achieves the above goals.
    Reference: [1] Bouchaib Radi and Abdelkhalak El Hami. Advanced Numerical Methods with Matlab 2 Resolution of Nonlinear, Differential and Partial Differential Equations. John Wiley & Sons, Incorporated, 2018.
    [2] D. D. Wall. The order of an iteration formula. Mathematics of Computation, 10(55):167–168, Jan 1956.
    [3] J. H. Wegstein. Accelerating convergence of iterative processes. Communications of the ACM, 1(6):9–13, Jan 1958.
    [4] 張榮興. VISUAL BASIC 數值解析與工程應用. 高立圖書, 2002.
    [5] Charles Houston. Gutzler. An iterative method of Wegstein for solving simultaneous nonlinear equations, 1959.
    [6] J.a. Ezquerro, A. Grau, M. GrauSánchez, M.a. Hernández, and M. Noguera. Analysing the efficiency of some modifications of the secant method. Computers & Mathematics with Applications, 64(6):2066–2073, 2012.
    [7] G. Liu, C. Nie, and J. Lei. A novel iterative method for nonlinear equations. IAENG
    International Journal of Applied Mathematics, 48:444–448, 01 2018.
    [8] Manoj Kumar, Akhilesh Kumar Singh, and Akanksha Srivastava. Various newtontype iterative methods for solving nonlinear equations. Journal of the Egyptian Mathematical Society, 21(3):334–339, October 2013.
    [9] G. Alefeld. On the convergence of halley’s method. The American Mathematical Monthly, 88(7):530, August 1981.
    [10] George H. Brown. On halley’s variation of newton’s method. The American Mathematical Monthly, 84(9):726, November 1977.
    [11] Yuri Levin and Adi BenIsrael. Directional newton methods in n variables. Mathematics of Computation, 71(237):251–263, May 2001.
    [12] HengBin An and ZhongZhi Bai. Directional secant method for nonlinear equations. Journal of Computational and Applied Mathematics, 175(2):291–304, March 2005.
    [13] HengBin An and ZhongZhi Bai. 關於多元非線性方程的broyden 方法. Mathematica Numerica Sinica, 26(4):385–400, November 2004.
    Description: 碩士
    國立政治大學
    應用數學系
    107751015
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0107751015
    Data Type: thesis
    DOI: 10.6814/NCCU202001843
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    101501.pdf2559KbAdobe PDF282View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback