English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51718877      Online Users : 638
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/132921


    Title: Mining Effective Learning Behaviors in a Web-based Inquiry Science Environment
    Authors: 陳志銘
    Chen, Chih-Ming
    王文方
    Wang,  Wen-Fang
    Contributors: 圖檔所
    Keywords: Learning process analysis;Datamining;xAPI;Sequential pattern mining;Lag sequential analysis;Web-based inquiry learning
    Date: 2020-04
    Issue Date: 2020-12-15 11:20:30 (UTC+8)
    Abstract: Analyzing learners` learning behaviors helps teachers understand how learning behaviors of learners influence learning performance. To determine which learning behaviors influence learners` science-based inquiry learning performance, this work develops an xAPI (Experience Application Programming Interface)-based learning record store module embedded in a Collaborative Web-based Inquiry Science Environment (CWISE) to record detailed data about students’ learning processes. This work discusses whether the significant correlation and cause-effect relationship among science inquiry competence, learning time, and learning performance exist, and examines whether remarkable shifts and differences in the learning behaviors of learners with different learning performances and inquiry competences exist by using sequential pattern mining and lag sequential analysis. The results demonstrate that inquire ability, total learning time in the designed inquiry learning course, and learning time in an inquiry buoyancy simulation experiment are positively correlated with learning performance and can predict learning performance, and the learning time in the inquiry buoyancy simulation experiment appears to be the most significant predictor. The results of lag sequential analyses indicate that learners with high learning performance and high inquiry competence re-adjust hypotheses after performing an inquiry buoyancy simulation experiment, while learners with low learning performance and low inquiry competence lack this critical inquiry learning behavior. This study presents a systematic analysis method to insight the effective learning behaviors in a web-based inquiry learning environment based on mining students` learning processes, thus providing potential benefits in guiding learners to adjust their learning behaviors and strategies.
    Relation: Journal of Science Education and Technology, 29, 519-535
    Data Type: article
    Appears in Collections:[圖書資訊與檔案學研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    325.pdf1034KbAdobe PDF2240View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback