English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52550103      Online Users : 847
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/132655


    Title: 機器學「習」:以文字探勘法探索習近平時期之大外宣戰略
    Machine Learning: An Application of Text Mining to Xi`s Grand External Propaganda Strategy
    Authors: 邵軒磊
    Shao, Hsuan-Lei
    Contributors: 中國大陸研究
    Keywords: 文字探勘 ; 機器學習 ; 大外宣 ; 習近平 
    Text Mining ; Grand External Propaganda Strategy ; Xi Jinping ; Machine Learning
    Date: 2019-12
    Issue Date: 2020-11-17 16:32:24 (UTC+8)
    Abstract: 因為中共政經地位的轉變及其「銳實力」的影響,國際上之「中國形象」在近年有相當變化。尤以習近平提出「大外宣」戰略後,上述發展更為顯著,同時其細節也尚待研究。對於研究者而言,因為各種資料的質與量的快速成長,使得以個人經驗與智識判斷為主的研究方式受到挑戰。相對於此,使用數位方法的優點在於得以檢驗並更有效累積;觀察資料與模型,也能適應未來變化而增添調整。因此,本文作者試圖將數位技術應用至此一題目,比如文字探勘、機器學習、主題分析模型等,在龐大現代政治論述文本中建立主題模型,嘗試尋找政治領袖在演講中所透露之政治訊息以及政治價值,亦即指出習近平時期演講在各個主題的概括樣貌。初步的解答是:以習近平自身講話做主題分析後,確實發現其對外與對內用語不同,機器能分辨並歸類其用語特色;也能看出在領域上則「外交、經濟、生態」類文本之主題與「黨建、政治、國防」之主題不同。本研究蒐集了中國國家主席習近平的發言作為語料庫,並使用數位方法初探中文政治文獻,期待藉此關注中共大外宣與銳實力。
    "China`s image" has undergone a dramatic transformation as China keeps expanding its international influence through its rising sharp power. In particular, much of the propaganda work under Xi Jinping has been carried out through a "Grand External Propaganda Strategy". Growing concerns about the implications of this strategy demand a closer look at its characteristics and practice. Yet, there is a major methodological challenge of analyzing massive amounts of data efficiently and accurately while not relying solely on personal understandings. To solve this challenge, digital methods are required, which will be the topic of this paper. This research collated Xi`s speeches into a database and developed digital tools to process and analyze "China`s Sharp Power" and "Grand External Propaganda Strategy." It uses text mining and machine learning, as well as adopting the "Latent Dirichlet Allocation" (LDA) model to extract the main themes from various propaganda texts in order to identify the political messages and ideologies the Chinese top leadership tried to communicate. This paper demonstrates that there are significant differences between speeches on domestic topics: DIPLOMACY, ECONOMICS and ECOLOGY, and on externally directed topics: PARTY-BUILDING, POLITICS and DEFENCE. This research collected Xi`s massive political speeches to a database, developed digital tool to process them, and analyzed "China Sharp Power" and "Grand External Propaganda Strategy" to explore the unknown future.
    Relation: 中國大陸研究, 62(4), 133-157
    Data Type: article
    DOI 連結: https://doi.org/10.30389/MCS.201912_62(4).0005
    DOI: 10.30389/MCS.201912_62(4).0005
    Appears in Collections:[中國大陸研究 TSSCI] 期刊論文

    Files in This Item:

    File Description SizeFormat
    17.pdf1894KbAdobe PDF2280View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback