English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51717937      Online Users : 601
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/131637


    Title: 使用總體經驗模態分解法與均勻相位經驗模態分解法對美國債券殖利率建模
    Modeling the U.S. Yield Curves with Different Maturities by The EEMD and the UPEMD
    Authors: 姜林宗叡
    Tsung-Jui, Chiang Lin
    Contributors: 蔡尚岳
    曾正男

    Tsai,Shang-Yueh
    Tzeng, Jengnan

    姜林宗叡
    Tsung-Jui, Chiang Lin
    Keywords: 總體經驗模態分解法
    均勻相位經驗模態分解法
    美國債券殖利率曲線
    非線性現象
    非定態現象
    nonlinearity
    the ensemble empirical decomposition (EEMD)
    the uniform phase empirical decomposition (UPEMD)
    the U.S. bond yield curves
    nonstationarity
    Date: 2020
    Issue Date: 2020-09-02 12:16:37 (UTC+8)
    Abstract: 在過去的研究當中,我們發現財金的時間序列相關的資料,存在著非線性與非定態的現象。我們認為不同到期期間的美國債券殖利率曲線也存在著非線性與非定態。傳統上,財金領域的學者對於時間序列相關資料的研究,大多使用時間序列的分析模型進行建模,不過使用時間序列分析模型的限制是所欲分析的標的必須是定態的資料。如果原始資料為非定態,一般會使用差分使其轉換成定態的資料。不過此種處理模式會使得原始資料損失一些重要資訊,比方說資料序列中低頻率部分的資訊。經驗模態分解法被認為可以針對非線性與非定態的時間序列資列進行拆解與分析,並有良好的結果。總體經驗模態分解法更進一步修正了經驗模態分解法的一些缺點,而均勻相位經驗模態分解法解決了總體經驗模態分解法模式分割的問題。

    在本研究中,我們使用了總體經驗模態分解法與均勻相位經驗模態分解法拆解不同到期期間的美國債券殖利率曲線,並建立預測模型。此外,我們發現邊界條件對於總體經驗模態分解法有很嚴重的影響,因此我們建立了三種型態的模型,其中包含了有修正邊界條件的模型與未修正邊界條件的模型。在我們以總體經驗模態分解法與均勻相位經驗模態分解法拆解完原始資料後,經由本研究所設計的程序,篩選出實用的本徵模函數,再利用立方曲線配適法進行預測。經由預測誤差的比較,本研究發現使用均勻相位經驗模組拆解法篩選出的實用本徵模函數有最好的預測結果。
    The existence of nonstationarity and nonlinearity in the financial series is common and difficult to handle. Traditionally, financial researchers apply statistical time series models. However, the series must be stationary in order to apply time series models. If a series is not stationary, it is usually detrend by taking difference although losing certain information such as the low frequency part of the data.
    We try to model the time series of the U.S. bond yield curves with different maturities, which show the nonstationarity and nonlinearity as well. Other than the statistical models, the empirical decomposition (EMD) is recognized as the suitable mothed to analyze the nonstationarity and nonlinearity time series data among a wide range of scientific disciplines, and is promising for financial data. Nevertheless, there exists the mode-mixing problem in the EMD, hence some approaches are proposed to solve it including the ensemble empirical decomposition (EEMD). The uniform phase empirical decomposition (UPEMD) further improve the EEMD by reducing the mode-splitting and residual noise effects.
    In the study, we implement the EEMD and the UPEMD to the U.S. bond yield curves with different maturities. The boundary effect of the original data may occur, so that we also consider some methods for boundary effect reduction during the decomposition. After the decomposition, we obtain the useful IMF and predict future values by cubic curve fitting. From our investigation, the UPEMD with boundary condition modification produces the accurate predictions.
    Reference: Reference

    Abhyankar, A., Copeland, L. S., and Wong, W. (1995). Nonlinear dynamics in real-time equity market indices: Evidence from the United Kingdom. The Economic Journal, 105(431), 864-880.

    Abhyankar, A., Copeland, L. S., and Wong, W. (1997). Uncovering nonlinear structure in real-time stock-market indexes: The S&P 500, the DAX, the Nikkei 225, and the FTSE-100. Journal of Business & Economic Statistics, 15(1), 1-14.

    Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2015). Time Series Analysis: Forecasting and Control. John Wiley & Sons.

    Cheng, C. H. and Wei, L. Y. (2014). A novel time-series model based on empirical mode decomposition for forecasting TAIEX. Economic Modelling, 36, 136-141.

    Diebold, F. X., Rudebusch, G. D., and Aruoba, B. S. (2006). The macroeconomy and the yield curve: A dynamic latent factor approach. Journal of Econometrics 127 (1–2), 309–338.

    Fama, E. F. (1991). Efficient capital markets: II. The journal of finance, 46(5), 1575-1617.



    Huang, N. E., Shen, Z., Long, S. R., Wu, M. L., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C., and Liu, H. H. (1998), The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. London A, 454, pp. 903–995.


    Lake, D. E., Richman, J. S., Griffin, M. P., and Moorman, J. R. (2002). Sample entropy analysis of neonatal heart rate variability. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 283(3), R789-R797.

    Li, G., Yang, Z., and Yang, H. (2018). Noise reduction method of underwater acoustic signals based on uniform phase empirical mode decomposition, amplitude-aware permutation entropy, and Pearson correlation coefficient. Entropy, 20(12), 918.

    Mönch, E. (2008). Forecasting the yield curve in a data-rich environment: A no-arbitrage factor-augmented VAR approach. Journal of Econometrics, 146(1), 26-43.

    Nelson, C. R. and Siegel, A. F. (1987). Parsimonious modeling of yield curves. Journal of Business, 473-489.


    Pincus, S. (1995). Approximate entropy (ApEn) as a complexity measure. Chaos: An Interdisciplinary Journal of Nonlinear Science, 5(1), 110-117.



    Wang, Y. H., Hu, K., and Lo, M. T. (2018). Uniform phase empirical mode decomposition: An optimal hybridization of masking signal and ensemble approaches. IEEE Access, 6, 34819-34833.



    Wang, Y. H., Yeh, C. H., Young, H. W. V., Hu, K., and Lo, M. T. (2014), On the computational complexity of the empirical mode decomposition algorithm. Physica A: Statistical Mechanics and Its Applications, 400(15), pp. 159-167.


    Wu, Z. and Huang, N. E. (2009), Ensemble empirical mode decomposition: A noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1, pp. 1-41.

    Yeh, J. R., Shieh, J. S., and Huang, N. E. (2010), Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method. Advances in Adaptive Data Analysis, 2(2), pp. 135–156.

    Zhang, C., & Pan, H. (2015, December). A novel hybrid model based on EMD-BPNN for forecasting US and UK stock indices. In 2015 IEEE International Conference on Progress in Informatics and Computing (PIC) (pp. 113-117). IEEE.

    Zhan, L., & Li, C. (2017). A comparative study of empirical mode decomposition-based filtering for impact signal. Entropy, 19(1), 13.
    Description: 碩士
    國立政治大學
    應用物理研究所
    106755001
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0106755001
    Data Type: thesis
    DOI: 10.6814/NCCU202001401
    Appears in Collections:[應用物理研究所 ] 學位論文

    Files in This Item:

    File Description SizeFormat
    500101.pdf6450KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback