English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114105/145137 (79%)
Visitors : 52203602      Online Users : 688
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/131516


    Title: 仿射AFNS利率模型參數之校準方法探討
    Calibrating the arbitrage-free Nelson-Siegel model
    Authors: 陳文忠
    Chen, Wen-Chung
    Contributors: 謝明華
    Hsieh, Ming-Hua
    陳文忠
    Chen, Wen-Chung
    Keywords: 利率期限模型
    參數校準
    AFNS 模型
    Nelder-Mead 方法
    Term Structure Model
    Calibration
    AFNS model
    Nelder-Mead
    Date: 2020
    Issue Date: 2020-09-02 11:51:18 (UTC+8)
    Abstract: Arbitrage Free Nelson Siegel model (AFNS model) 為滿足無套利條件且具優良配適與預測能力之利率模型,本研究探討 AFNS model 參數之校準方法。文中以台灣公債利率資料與美國公債利率資料為例,使用兩種不同的方式,搭配最小平方法與 Nelder-Mead 方法來校準參數,並比較其計算結果之差異。本文發現第二種參數校準方式可以有效率且準確地找出參數校準值。
    Arbitrage-Free Nelson Siegel models is an affine term structure model that satisfies no-arbitrage condition and displays good fit and superior forecasting performance. This study explores the calibration method of AFNS model parameters. In this paper, the interest rate data of Taiwan government bonds and US government bonds are used as examples. Two methods are used, combined with the least square method and the Nelder-Mead method to calibrate the parameters, and the differences in the calculation results are compared. This article found that the second calibration method can efficiently and accurately find the parameter calibration value.
    Reference: Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of political economy, 81(3), 637-654.
    Christensen, J. H., Diebold, F. X., & Rudebusch, G. D. (2011). The affine arbitragefree class of Nelson–Siegel term structure models. Journal of Econometrics, 164(1), 4-20.
    Cox, J. C., Ingersoll Jr, J. E., & Ross, S. A. (2005). A theory of the term structure of interest rates. In Theory of Valuation (pp. 129-164). World Scientific.
    Diebold, F. X., & Li, C. (2006). Forecasting the term structure of government bond yields. Journal of econometrics, 130(2), 337-364.
    Duffee, G. R. (2002). Term premia and interest rate forecasts in affine models. The Journal of Finance, 57(1), 405-443.
    Duffie, D., & Kan, R. (1996). A yield‐factor model of interest rates. Mathematical finance, 6(4), 379-406.
    Heath, D., Jarrow, R., & Morton, A. (1992). Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation. Econometrica: Journal of the Econometric Society, 77-105.
    Hull, J., & White, A. (1990). Pricing interest-rate-derivative securities. The review of financial studies, 3(4), 573-592.
    IAIS, ICS, Retrieved June 1 2020, from: https://www.iaisweb.org/page/supervisorymaterial/insurance-capital-standard
    Marek, J. (2015). The Nelson-Siegel Model: Present Application and Alternative Lambda Determination.
    Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The computer journal, 7(4), 308-313.
    Nelson, C. R., & Siegel, A. F. (1987). Parsimonious modeling of yield curves. Journal of business, 473-489.
    Singleton, K. J. (2009). Empirical dynamic asset pricing: model specification and econometric assessment. Princeton University Press.
    Tourrucôo, F., Caldeira, J. F., Moura, G., & Santos, A. (2016). Forecasting the yield curve with the arbitrage-free dynamic Nelson–Siegel model: Brazilian evidence. Anais do XLII Encontro Nacional de Economia [Proceedings of the 42nd Brazilian Economics Meeting]. Niterói: ANPEC-Associação Nacional dos Centros de Pós Graduação em Economia [Brazilian Association of Graduate Programs in Economics],
    Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal of financial economics, 5(2), 177-188.
    Xu, Y., Sherris, M., & Ziveyi, J. (2019). Market Price of Longevity Risk for a Multi‐Cohort Mortality Model With Application to Longevity Bond Option Pricing. Journal of Risk and Insurance.
    Description: 碩士
    國立政治大學
    風險管理與保險學系
    107358026
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0107358026
    Data Type: thesis
    DOI: 10.6814/NCCU202001669
    Appears in Collections:[風險管理與保險學系] 學位論文

    Files in This Item:

    There are no files associated with this item.



    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback