政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/131494
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114014/145046 (79%)
造訪人次 : 52054603      線上人數 : 407
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/131494
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/131494


    題名: 以相空間分割與階層序列合成預測學生表現
    Predicting Student Performance with Phase Space Partition and Hierarchical Sequence Synthesis
    作者: 許甄珉
    Hsu, Chen-Min
    貢獻者: 郁方
    Yu, Fang
    許甄珉
    Hsu, Chen-Min
    關鍵詞: 相空間
    預測
    階層序列
    合成
    GHSOM
    Phase Space Partition
    Hierarchical Sequence
    日期: 2020
    上傳時間: 2020-09-02 11:46:23 (UTC+8)
    摘要: 由於科技發展迅速,許多學校與教師皆使用e-learning平台作為教學輔助的工具,因此平台記錄了學生大量的學習行為,而如何充分利用這些數據來提高課程的有效性,是大多數學者關注的議題。我們希望利用平台的大量紀錄資料,透過機器學習方法來預測學生的學習行為,滿足不同學生的個別需求,也可對具有風險的學生採取補救的措施,讓e-learning平台從原本只提供數據的被動角色轉換為具有評估學習狀態能力的主動角色,從學生學習的進程預測未來的學習狀態與表現,進而提供教師額外的資訊,協助改善學生學習狀態。
    Due to the rapid development of science and technology, many schools and teachers use the e-learning platform as a teaching aid tool. Therefore, the platform records a large number of students` learning behaviors. How to make full use of these data to improve the effectiveness of the curriculum is what most scholars are concerned about. We hope to use a large amount of recorded data on the platform to predict students` learning behaviors through machine learning methods to meet the individual needs of different students. We can also take remedial measures for students at risk, with the ability to assess the learning status, predicting the future learning status and performance from the student`s learning process, and then providing teachers with additional information to help improve the student`s learning status. So we can turn the e-learning platform from playing a passive role on data-access-record to an active one with evaluation-caution-transformation. There are three major challenges in predicting student performance. The first is that student records are often high-dimensional data, which makes the prediction effect poor. The second problem is that the data is time-series data, so the order of the data must be considered. In order, the third is that in most cases, we only have partial information, so it is challenging to use partial data to make accurate predictions. In this paper, we will use phase space partition to split high-dimensional data, and use the symbolic label to represent partitions. These symbolic label sequences can be regarded as discrete sequences. Finally, HiSeqGAN, the neural network of sequence synthesis is used to generate a large amount of data, and use Label Error to calculate the symbol label distance between the generated data and the real data to predict the future performance of students. Then use the methods mentioned above to solve the three major challenges.
    參考文獻: [1] A., S., Vinodhini, G., and Chandrasekaran, R. M. (2018). Predicting students’ academic performance in the university using meta decision tree classifiers. J. Comput.
    Sci., 14(5):654–662.
    [2] Arnold, K. E. and Pistilli, M. D. (2012). Course signals at purdue: using learning analytics to increase student success. In Dawson, S., Haythornthwaite, C., Shum, S. B.,Gasevic, D., and Ferguson, R., editors, Second International Conference on Learning Analytics and Knowledge, LAK 2012, Vancouver, BC, Canada, April 29 - May 02, 2012, pages 267–270. ACM.
    [3] Asif, R., Merceron, A., Ali, S. A., and Haider, N. G. (2017). Analyzing undergraduate students’ performance using educational data mining. Comput. Educ., 113:177–194.
    [4] Baradwaj, B. and Pal, S. (2011). Mining educational data to analyze students’ performance. International Journal of Advanced Computer Science and Applications, 2:63–69.
    [5] Coulom, R. (2006). Efficient selectivity and backup operators in monte-carlo tree search. In van den Herik, H. J., Ciancarini, P., and Donkers, H. H. L. M., editors,
    Computers and Games, 5th International Conference, CG 2006, Turin, Italy, May 29-31, 2006. Revised Papers, volume 4630 of Lecture Notes in Computer Science, pages 72–83. Springer.
    [6] Dittenbach, M., Merkl, D., and Rauber, A. (2000). The growing hierarchical self-organizing map. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and
    Perspectives for the New Millennium, volume 6, pages 15–19. IEEE.
    [7] Esteban, C., Hyland, S., and Rätsch, G. (2017). Real-valued (medical) time series generation with recurrent conditional gans.
    [8] Fairos, W., Wan Yaacob, W. F., Azlin, S., Nasir, S., Faizah, W., Sobri, N., Mara, C., and Kelantan, M. (2019). Supervised data mining approach for predicting student
    performance. Indonesian Journal of Electrical Engineering and Computer Science, 16:1584–1592.
    [9] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances in
    neural information processing systems, pages 2672–2680.
    [10] Grayson, A., Miller, H., and Clarke, D. D. (1998). Identifying barriers to help-seeking: a qualitative analysis of students’ preparedness to seek help from tutors. British Journal of Guidance & Counselling, 26(2):237–253.
    [11] Guo, J., Lu, S., Cai, H., Zhang, W., Yu, Y., and Wang, J. (2018). Long text generation via adversarial training with leaked information.
    [12] Hadamard (1898). Les surfaces "a courbures opposées et leurs lignes géodésiques. Journal de Mathématiques Pures et Appliquées, 4:27–74.
    [13] Hadriche, A., Jmail, N., and Elleuch, R. (2014). Different methods of partitioning the phase space of a dynamic system. International Journal of Computer Applications,93:1–5.
    [14] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8):1735–1780.
    [15] Hu, Y.-H., Lo, C.-l., and Shih, S.-P. (2014). Developing early warning systems to predict students’ online learning performance. Computers in Human Behavior.
    [16] Kennel, M. and Buhl, M. (2003). Estimating good discrete partitions from observed data: Symbolic false nearest neighbors. Physical review letters, 91:084102.
    [17] Khatkhate, A. (2018). Anomaly detection in electromechanical systems using symbolic dynamics.
    [18] Kim, B., Vizitei, E., and Ganapathi, V. (2018). Gritnet: Student performance prediction with deep learning. In Boyer, K. E. and Yudelson, M., editors, Proceedings of the 11th International Conference on Educational Data Mining, EDM 2018, Buffalo, NY, USA, July 15-18, 2018. International Educational Data Mining Society (IEDMS).
    [19] Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480.
    [20] Kumar, A., Selvam, R., and Kumar, K. (2018). Review on prediction algorithms in educational data mining. International Journal of Pure and Applied Mathematics,
    118:531–536.
    [21] Lin, T. Y., Chuang, H. H. C., and Yu, F. (2018). Tracking supply chain process variability with unsupervised cluster traversal. In 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and
    Technology Congress (DASC/PiCom/DataCom/CyberSciTech), pages 966–973. IEEE.
    [22] Luo, J., Sorour, S. E., Mine, T., and Goda, K. (2015). Predicting student grade based on free-style comments using word2vec and ANN by considering prediction results obtained in consecutive lessons. In Santos, O. C., Boticario, J., Romero, C., Pechenizkiy, M., Merceron, A., Mitros, P., Luna, J. M., Mihaescu, M. C., Moreno, P., Hershkovitz, A., Ventura, S., and Desmarais, M. C., editors, Proceedings of the 8th International Conference on Educational Data Mining, EDM 2015, Madrid, Spain, June 26-29, 2015, pages 396–399. International Educational Data Mining Society (IEDMS).
    [23] Lykourentzou, I., Giannoukos, I., Mpardis, G., Nikolopoulos, V., and Loumos, V. (2009). Early and dynamic student achievement prediction in e-learning courses using neural networks. J. Assoc. Inf. Sci. Technol., 60(2):372–380.
    [24] Macqueen, J. (1967). Some methods for classification and analysis of multivariate observations. In 5-th Berkeley Symposium on Mathematical Statistics and Probability, pages 281–297.
    [25] Okubo, F., Yamashita, T., Shimada, A., and Ogata, H. (2017). A neural network approach for students’ performance prediction. pages 598–599.
    [26] Rajagopalan, V., Ray, A., Samsi, R., and Mayer, J. (2007). Pattern identification in dynamical systems via symbolic time series analysis. Pattern Recognition, 40:2897–
    2907.
    [27] Rattadilok, P. and Roadknight, C. (2018). Improving student’s engagement through the use of learning modules, instantaneous feedback and automated marking. In 2018
    IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE), pages 802–806.
    [28] Rendle, S. (2010). Factorization machines. In Webb, G. I., Liu, B., Zhang, C., Gunopulos, D., and Wu, X., editors, The 10th IEEE International Conference on Data Mining, pages 995–1000. IEEE Computer Society.
    [29] Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014). Deterministic policy gradient algorithms. 31st International Conference on Machine
    Learning, ICML 2014, 1.
    [30] Sloane, N. and Wyner, A. (2009). Prediction and entropy of printed english. pages 194–208.
    [31] Soni, A., Kumar, V., Kaur, R., and Hemavathi, D. (2018). Predicting student performance using data mining techniques. International Journal of Pure and Applied
    Mathematics, 119:221–226.
    [32] Subbu, A. and Ray, A. (2008). Space partitioning via hilbert transform for symbolic time series analysis. Applied Physics Letters, 92:084107–084107.
    [33] Sweeney, M., Lester, J., and Rangwala, H. (2015). Next-term student grade prediction. In 2015 IEEE International Conference on Big Data, Big Data 2015, Santa Clara,
    CA, USA, October 29 - November 1, 2015, pages 970–975. IEEE Computer Society.
    [34] Tien, Y., Hsu, C., and Yu, F. (2019). Hiseqgan: Hierarchical sequence synthesis and prediction. In Tetko, I. V., Kurková, V., Karpov, P., and Theis, F. J., editors,
    Artificial Neural Networks and Machine Learning - ICANN 2019: Deep Learning - 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17-19, 2019, Proceedings, Part II, volume 11728 of Lecture Notes in Computer Science, pages 621–638. Springer.
    [35] Vega-Márquez, B., Rubio-Escudero, C., Riquelme, J. C., and Nepomuceno-Chamorro, I. A. (2019). Creation of synthetic data with conditional generative adversarial networks. In 14th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2019) - Seville, Spain, May 13-15, 2019, Proceedings, volume 950 of Advances in Intelligent Systems and Computing, pages 231–240. Springer.
    [36] Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn., 8(3–4):229–256.
    [37] Williams, R. J. and Zipser, D. (1989). A learning algorithm for continually running fully recurrent neural networks. Neural computation, 1(2):270–280.
    [38] Yu, L., Zhang, W., Wang, J., and Yu, Y. (2017). Seqgan: Sequence generative adversarial nets with policy gradient. In Singh, S. P. and Markovitch, S., editors, Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA, pages 2852–2858. AAAI Press.
    描述: 碩士
    國立政治大學
    資訊管理學系
    107356019
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0107356019
    資料類型: thesis
    DOI: 10.6814/NCCU202001449
    顯示於類別:[資訊管理學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    601901.pdf4833KbAdobe PDF20檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋