English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114014/145046 (79%)
Visitors : 52067516      Online Users : 567
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/131487
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/131487


    Title: 平台互動性於各類服務中對資訊揭露之影響
    Do platforms influence information disclosure across services
    Authors: 羅靖婷
    Luo, Jing-Ting
    Contributors: 林怡伶
    簡士鎰

    Lin, Yi-Ling
    Chien, Shih-Yi

    羅靖婷
    Luo, Jing-Ting
    Keywords: 隱私顧慮
    資訊揭露
    任務科技適配模型
    媒體豐富度
    人型機器人互動
    Privacy concern
    Information disclosure
    Task-Technology Fit
    Media richness
    Human-Robot Interaction
    Date: 2020
    Issue Date: 2020-09-02 11:44:58 (UTC+8)
    Abstract: 近年來技術和資訊平台日新月異,自動化也已經成為現代各類服務中的趨勢,也有助於無人商店的發展。應用新的科技平台可能會引發隱私問題,導致使用者揭露個人資訊的意願降低。資訊揭露是促進新技術發展的重要因素,對於數據的收集與分析是不可或缺的因子。而隨著使用者對於隱私問題的顧慮增加,在面臨新技術時通常會降梯資訊的提交意願。資訊平台必須通過提供的適當的媒體豐富度來降低用戶對於平台的不確定性。媒體豐富性理論已經在不同的媒體平台上討論了一段時間,以及任務科技適配理論(TTF)也已應用於跨平台的資訊系統。為了研究隱私權顧慮、資訊揭露,媒體豐富度和任務科技適配度之間的關係,本研究以TTF概念結合了媒體豐富度理論,實驗設計中包括資訊平台(iPad和Pepper人型機器人)結合無人商店服務來驗證其關係。在這項研究中進行了兩輪實驗。研究一利用發放問卷驗證有關隱私權顧慮、資訊揭露和任務科技適配度模型的結果,當使用者認為該資訊系統可以有效的幫助他們完成醫療或銀行服務,使用者將放心的提交個人的醫療及財務資訊於系統中。研究二則實際探討兩種平台(iPad和機器人)之間的差異以及三種不同服務(零售服務,醫療服務和銀行服務)之間的差異,利用模擬的無人商店實驗實際觀察使用者的平台操作行為。結果顯示,隱私顧慮確實降低使用者資訊接受的意願,而使用者願意提交自己認為較不敏感的資訊。另外,服務內容顯著影響資訊揭露的行為,使用者較願意在零售業(便利商店)的服務中提供資訊,當使用者認為方便或是提交的資訊合理且適合該項服務時,會提升他們提交資訊的意願。而平台的差異在研究二中反而沒有顯著的效果,除此之外,本研究發現個人差異也是一個影響資訊揭露的因素。本研究將使電子商務領域和人機互動領域提供有效的建議。
    Technology and media change rapidly in recent years. Automation has been a trend especially for unmanned store development. Applying new technical tools may cause privacy concerns, leading to a low willingness to disclose personal information. Information disclosure is an important factor to facilitate the development of a new technology, which often decreases while a user`s privacy concern increases. Technical tools need to reduce user uncertainty through rich information provided. Media richness theory has been discussed in different media platforms for a while. Also, task technology fit (TTF) has been applied to various information systems across diverse task contexts. To examine the relationship between privacy concerns, information disclosure, media richness, and information technologies, the media richness theory was extended with the TTF concept in this study. Technology platforms (iPad vs. Pepper robot) and unmanned store service are included in the experimental design. Two rounds experiments are conducted in this study. Study 1 provide the significant results of privacy concern, information disclosure and TTF model. Users will disclose more personal information if they think the system can help them well. Study 2 provide the difference between two platforms (iPad and robot) and the difference among three different service (retail, medical, and financial). The results show that privacy concern has a negative impact on information disclosure. Additionally, the service context also significantly influences information disclosure. Last but not the least, personality is a factor that should also put into consideration. The findings can benefit the e-commerce fields and human-robot interaction context.
    Reference: Ahmad, M., Mubin, O., & Orlando, J. (2017). A Systematic Review of Adaptivity in Human-Robot Interaction. Multimodal Technologies and Interaction, 1(3), 14.
    Aljukhadar, M., Senecal, S., & Ouellette, D. (2010). Can the media richness of a privacy disclosure enhance outcome? A Multifaceted view of trust in rich media environments. International Journal of Electronic Commerce, 14(4), 103–126.
    Amichai-Hamburger, Y., & Vinitzky, G. (2010). Social network use and personality. Computers in Human Behavior, 26(6), 1289–1295.
    Bailey, A. A., Pentina, I., Mishra, A. S., & Ben Mimoun, M. S. (2017). Mobile payments adoption by US consumers: an extended TAM. International Journal of Retail and Distribution Management, 45(6), 626–640.
    Bansal, G., Zahedi, F. M., & Gefen, D. (2016). Do context and personality matter? Trust and privacy concerns in disclosing private information online. Information and Management, 53(1), 1–21.
    Beck, A., Cañamero, L., & Bard, K. A. (2010). Towards an Affect Space for robots to display emotional body language. Proceedings - IEEE International Workshop on Robot and Human Interactive Communication, 464–469.
    Bentler, P. M., & Hu, L. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3(4), 424–453.
    Bergström, A. (2015). Online privacy concerns : A broad approach to understanding the concerns of different groups for different uses. Computers in Human Behavior, 53, 419–426.
    Brunelle, E., & Lapierre, J. (2008). Testing media richness theory to explain consumers’ intentions of buying online. ACM International Conference Proceeding Series, 1–6.
    Cane, S., & McCarthy, R. (2009). Analyzing the Factors That Affect Information Systems Use: a Task-Technology Fit Meta-Analysis. Journal of Computer Information Systems.
    Changchun, G., Haider, M. J., & Akram, T. (2017). Investigation of the Effects of Task Technology Fit, Attitude and Trust on Intention to Adopt Mobile Banking: Placing the Mediating Role of Trialability. International Business Research, 10(4), 77.
    Claes Fornell, D. F. L. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18, 39–50.
    Clodfelter, R. (2010). Biometric technology in retailing: Will consumers accept fingerprint authentication? In Journal of Retailing and Consumer Services (Vol. 17, pp. 181–188). Elsevier. Retrieved from
    Collins, S. E., Witkiewitz, K., & Larimer, M. E. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211.
    Daft, R. L., & Lengel, R. H. (1986). Organizational Information Requirements , Media Richness and Structural Design Author ( s ): Richard L . Daft and Robert H . Lengel Published by : INFORMS Stable URL : http://www.jstor.org/stable/2631846 REFERENCES Linked references are available on JSTOR. Mangement Science, 32(5), 554–571.
    Dennis, A. R., & Kinney, S. T. (1998). Testing Media Richness Theory in the New Media: The Effects of Cues, Feedback, and Task Equivocality. Information Systems Research, 9(3), 256–274.
    Dinev, T., & Hart, P. (2006). An extended privacy calculus model for e-commerce transactions. Information Systems Research, 17(1), 61–80.
    Dishaw, M. T., & Strong, D. M. (1999). Extending the technology acceptance model with task-technology fit constructs, 36, 9–21.
    Ermakova, T., Fabian, B., & Zarnekow, R. (2014). Acceptance of Health Clouds-a Privacy Calculus Perspective. Ecis, 0–13.
    Gefen, D. (2000). E-commerce: The role of familiarity and trust. Omega, 28(6), 725–737.
    Gimpel, H., Huber, J., & Sarikaya, S. (2016). Customer satisfaction in digital service encounters: the role of Media Richness, social presence, and cultural distance.
    Goetz, J., Kiesler, S., & Powers, A. (2003). Matching Robot Appearance and Behavior to Tasks to Improve Human-Robot Cooperation. Humor International Journal Of Humor Research, 2003, 55–60.
    Goldberg, L. R. (1993). The structure of Phenotypic personality traits. American Psychological Association, 48(1), 26–34.
    Goodhue, D. L., & Thompson, R. L. (1995). Task-Technology Fit and Individual Performance. MIS Quarterly, 19(2), 213–236. https://doi.org/10.2307/249689
    Hoehle, H., Zhang, X., & Venkatesh, V. (2015). An espoused cultural perspective to understand continued intention to use mobile applications: A four-country study of mobile social media application usability. European Journal of Information Systems, 24(3), 337–359.
    Hsiao, J. L., & Chen, R. F. (2019). Understanding determinants of health care professionals’ perspectives on mobile health continuance and performance. Journal of Medical Internet Research, 21(3), 1–16.
    Hughes, D. J., Rowe, M., Batey, M., & Lee, A. (2012). A tale of two sites: Twitter vs. Facebook and the personality predictors of social media usage. Computers in Human Behavior, 28(2), 561–569.
    Isaac, O., Aldholay, A., Abdullah, Z., & Ramayah, T. (2019). Online learning usage within Yemeni higher education: The role of compatibility and task-technology fit as mediating variables in the IS success model. Computers and Education, 136(February), 113–129.
    Jahangir, N., & Begum, N. (2007). Effect of Perceived Usefulness , Ease of Use , Security and Privacy on Customer Attitude and Adaptation in the Context of E-Banking. Journal of Management Research, 7(3), 147–157.
    John, D., Concepción, S. W., & Shahriar, A. (2013). Application of the Task-Technology Fit Model to Structure and Evaluate the Adoption of E-Books by Academics. Journal of the American Society for Information Science and Technology, 64(1), 48–64.
    Kahn, P. H., Freier, N. G., Kanda, T., Ishiguro, H., Ruckert, J. H., Severson, R. L., & Kane, S. K. (2008). Design patterns for sociality in human-robot interaction, 97.
    Karsh, B. T., Holden, R., Escoto, K., Alper, S., Scanlon, M., Arnold, J., … Brown, R. (2009). Do beliefs about hospital technologies predict nurses’ perceptions of quality of care? A study of task-technology fit in two pediatric hospitals. International Journal of Human-Computer Interaction, 25(5), 374–389.
    Keith, M. J., Thompson, S. C., Hale, J., Lowry, P. B., & Greer, C. (2013). Information disclosure on mobile devices: Re-examining privacy calculus with actual user behavior. International Journal of Human Computer Studies, 71(12), 1163–1173.
    Kim, S. K., Park, M. J., Ahn, E. J., & Rho, J. J. (2015). Investigating the role of task-technology fit along with attractiveness of alternative technology to utilize RFID system in the organization. Information Development, 31(5), 405–420.
    Klopping, I. M., & McKinney, E. (2004). Extending the Technology Acceptance Model and the Task - Technology Fit Model to Consumer E - Commerce. Spring, 22(1), 35–48.
    Kokolakis, S. (2017). Privacy attitudes and privacy behaviour: A review of current research on the privacy paradox phenomenon. Computers and Security, 64(July 2015), 122–134.
    Lee, C. C., Cheng, H. K., & Cheng, H. H. (2007). An empirical study of mobile commerce in insurance industry: Task-technology fit and individual differences. Decision Support Systems, 43(1), 95–110.
    Lee, S.-H., & Lee, D.-W. (2018). A Study on ICT Technology Leading Change of Unmanned Store. Convergence for Information Technology, 8(4), 109–114.
    Lengel, R. H. (1988). The selection of communication media as an executive skill. In The Academy of Management Executive (Vol. II, pp. 225–232).
    Llze.Zigurs, & K.Buckland, B. (1998). A Theory of Task / Technology Fit Group Support Systems. MIS Quarterly, 22(3), 313–334.
    Malhotra, N. K., Kim, S. S., & Agarwal, J. (2004). Internet users’ information privacy concerns (IUIPC): The construct, the scale, and a causal model. Information Systems Research, 15(4), 336–355.
    McGill, T. J., & Klobas, J. E. (2009). A task-technology fit view of learning management system impact. Computers and Education, 52(2), 496–508.
    Milne, G. R., Pettinico, G., Hajjat, F. M., & Markos, E. (2017). Information Sensitivity Typology: Mapping the Degree and Type of Risk Consumers Perceive in Personal Data Sharing. Journal of Consumer Affairs, 51(1), 133–161.
    Minkov, M. (2018). A revision of Hofstede’s model of national culture: old evidence and new data from 56 countries. Cross Cultural and Strategic Management, 25(2), 231–256.
    Mutlu, B., & Forlizzi, J. (2008). Robots in organizations: The role of workflow, social, and environmental factors in human-robot interaction. Human-Robot Interaction (HRI), 2008 3rd ACM/IEEE International Conference On, 287–294.
    Prakash, A., & Rogers, W. A. (2015). Why some humanoid faces are perceived more positively than others: effects of human-likeness and task. International Journal of Social Robotics, 7(2), 309–331.
    Quercia, D., Las Casas, D., Pesce, J. P., Stillwell, D., Kosinski, M., Almeida, V., & Crowcroft, J. (2012). Facebook and privacy: The balancing act of personality, gender, and relationship currency. ICWSM 2012 - Proceedings of the 6th International AAAI Conference on Weblogs and Social Media, 306–313.
    Rouibah, K., Lowry, P. B., & Hwang, Y. (2016). The effects of perceived enjoyment and perceived risks on trust formation and intentions to use online payment systems: New perspectives from an Arab country. Electronic Commerce Research and Applications, 19, 33–43.
    Schneider, C. (2017). 10 reasons why AI-powered, automated customer service is the future. Retrieved from https://www.ibm.com/blogs/watson/2017/10/10-reasons-ai-powered-automated-customer-service-future/
    Shirani, A. I., Tafti, M. H. A., & Affisco, J. F. (1999). Task and technology fit: A comparison of two technologies for synchronous and asynchronous group communication. Information and Management, 36(3), 139–150.
    Suh, K. S. (1999). Impact of communication medium on task performance and satisfaction: An examination of media-richness theory. Information and Management, 35(5), 295–312.
    Tam, C., & Oliveira, T. (2016). Performance impact of mobile banking: using the task-technology fit (TTF) approach. International Journal of Bank Marketing, 34(4), 434–457.
    Tam, C., & Oliveira, T. (2019). Does culture influence m-banking use and individual performance? Information and Management, 56(3), 356–363.
    Tan, X., Qin, L., Kim, Y., & Hsu, J. (2012). Impact of privacy concern in social networking web sites. Internet Research, 22(2), 211–233.
    Teh, P. L., Yong, C. C., Chong, C. W., & Yew, S. Y. (2011). Do the big five personality factors affect knowledge sharing behaviour? A study of malaysian universities. Malaysian Journal of Library and Information Science, 16(1), 47–62.
    Tepavcevic, S., Koricanac, G., Zakula, Z., Milosavljevic, T., Stojiljkovic, M., & Isenovic, E. R. (2011). Collaboration, Dialogue, and Human-Robot Interaction. Hormone and Metabolic Research, 43(8), 524–530.
    Vitale, J., Tonkin, M., Herse, S., Clark, J., Wang, X., & Judge, W. (2018). Be more transparent and users will like you : A Robot Privacy and User Experience Design Experiment. Session Th-1B: Psychology and HRI, 379–387.
    Wallach. (2001). Hedonic and utilitarian motivations for online retail shopping behavior. Journal of Retailing and Consumer Services, 77, 511–535.
    Wang, T., Duong, T. D., & Chen, C. C. (2016). Intention to disclose personal information via mobile applications: A privacy calculus perspective. International Journal of Information Management, 36(4), 531–542.
    Watjatrakul, B. (2016). Online learning adoption: effects of neuroticism, openness to experience, and perceived values. Interactive Technology and Smart Education, 13(3), 229–243.
    Wirtz, J., Patterson, P. G., Kunz, W. H., Gruber, T., Lu, V. N., Paluch, S., & Martins, A. (2018). Brave new world: service robots in the frontline. Journal of Service Management, 29(5), 907–931.
    Wu, B., & Chen, X. (2017). Continuance intention to use MOOCs: Integrating the technology acceptance model (TAM) and task technology fit (TTF) model. Computers in Human Behavior, 67, 221–232.
    Yang, H., & Zhou, L. (2011). Extending TPB and TAM to mobile viral marketing: An exploratory study on American young consumers mobile viral marketing attitude, intent and behavior. Journal of Targeting, Measurement and Analysis for Marketing, 19(2), 85–98.
    Yeh, C. H., Wang, Y. S., Lin, S. J., Tseng, T. H., Lin, H. H., Shih, Y. W., & Lai, Y. H. (2018). What drives internet users’ willingness to provide personal information? Online Information Review, 42(6), 923–939.
    Zhang, X., Liu, S., Chen, X., Wang, L., Gao, B., & Zhu, Q. (2018). Health information privacy concerns, antecedents, and information disclosure intention in online health communities. Information and Management, 55(4), 482–493.
    Description: 碩士
    國立政治大學
    資訊管理學系
    107356004
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0107356004
    Data Type: thesis
    DOI: 10.6814/NCCU202001439
    Appears in Collections:[資訊管理學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    600401.pdf3398KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback