English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52552153      Online Users : 808
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/131361


    Title: 以成本效益為基礎的需求預測研究–個案分析
    Cost-based Demand Forecasting Analysis–A Case Study
    Authors: 劉哲銘
    Liu, Jhe-Ming
    Contributors: 唐揆
    洪叔民

    Tang, Kwei
    Horng, Shwu-Min

    劉哲銘
    Liu, Jhe-Ming
    Keywords: 需求預測
    成本效益
    供應鏈
    存貨
    Date: 2020
    Issue Date: 2020-08-03 18:44:26 (UTC+8)
    Abstract: 本研究探討主題為電子業品牌商於海外電子商務平台進行銷售時,肇因於前置時 間長而導致的高昂成本極需降低的管理議題。根據 B 公司負責供應鏈管理資深 主管表示當前多數電子產業的銷售預測方法,大多採取「銷售人員意見法」,由 負責該產品的銷售人員以競爭者概況、對通路端的了解加上專業知識,以主觀推 測客戶之預估需求量。而這種預估模式因為充滿人為因素,而產生高變動性以及 精準度不足的問題。
    因此本研究首先預測平台銷售業務所需要的出貨量,並根據此預測建立庫存模型, 進而假設庫存持有成本進行分析。本研究採用 ARIMA、VAR 以及 ANN 三種不同模型,以驗證出貨量與其餘內生變數間的相關性以及探討不同模型的預測精準度。為了證明立論的代表性,本研究另模擬 270 組數據以分析產品的集群分佈特性,發現符合不同產品的變異係數關係。最後依照變異係數的高低,挑選出兩項產品進行成本效益分析。
    本研究進一步進行獨立樣本的 T 檢定,嘗試比較各樣本平均數是否有顯著差異。 發現高變異係數的 ARIMA 與 VAR、ANN 有顯著差異,而 VAR 與 ANN 則無。 而在低變異係數方面,則是三者皆無顯著差異。推測若分析樣本數增加,可以在統計上有更好的顯著性差異。因此本研究建議未來當分析實務上需要尋找產品所對應的最適預測模型時,可透過不同變異係數進行分類,尋找最適的預測模型,以達到降低成本的目的。
    The topic of this study is the management issue that the case company is facing a high cost caused by the long lead time and inaccuracy forecast when selling on overseas e- commerce platforms. According to the senior director in charge of supply chain management of case company, most of the current sales forecasting methods for the electronics industry mostly adopt the "salesperson opinion method". And this forecasting model is full of human factors, resulting in high variability and insufficient accuracy.
    Therefore, this study first predicts the shipments required by the platform`s sales, and builds an inventory model based on this forecast, and then assumes inventory holding costs for analysis. This study uses three different models including ARIMA, VAR, and ANN to verify the correlation between shipments and other variables and discuss the prediction accuracy of different models. In order to prove the representativeness of the argument, this study also simulated 270 sets of data to analyze the cluster distribution characteristics of the products and found that they corresponded to the coefficient of variation relationship of different products. Finally, according to the coefficient of variation, two products were selected for cost-benefit analysis.
    Therefore, this study suggests that in the future, when analyzing the practical need to find the optimal prediction model corresponding to the product, it can be classified by different coefficients of variation to find the optimal prediction model to reduce costs.
    Reference: 中文文獻
    1. 朱大奇, & 史慧 (2006),人工神經網路原理及應用,北京:科學出版社。
    2. 陳旭昇(2013),時間序列分析:總體經濟與財務金融之應用,第二版,台北:東華書局。

    英文文獻
    3. Abbasimehr, H., Shabani, M., & Yousefi, M. (2020). An optimized model using LSTM network for demand forecasting. Computers & Industrial Engineering,065 .
    4. Alpaydin, E. (2020). Introduction to machine learning. MIT press.
    5. Amini, M. H., Kargarian, A., & Karabasoglu, O. (2016). ARIMA-based decoupled time series forecasting of electric vehicle charging demand for stochastic power system operation. Electric Power Systems Research, 140, 378-390.
    6. Barak, S., & Sadegh, S. S. (2016). Forecasting energy consumption using ensemble ARIMA–ANFIS hybrid algorithm. International Journal of Electrical Power & Energy Systems, 82, 92-104.
    7. Benvenuto, D., Giovanetti, M., Vassallo, L., Angeletti, S., & Ciccozzi, M. (2020). Application of the ARIMA model on the COVID-2019 epidemic dataset. Data in rief, 105340.
    8. Box, G. E, & Jenkins, G. M. (1970) Time Series Analysis, Forecasting, and Control. Francisco Holden-Day.
    9. Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.
    10. Cadenas, E., Rivera, W., Campos-Amezcua, R., & Heard, C. (2016). Wind speed prediction using a univariate ARIMA model and a multivariate NARX model. Energies, 9(2), 109.
    11. Chase Jr, C. W. (1993). Ways to improve sales forecasts. The Journal of Business. Forecasting, 12(3), 15.
    12. Dalkey, N., & Helmer, O. (1963). An experimental application of the Delphi method to the use of experts. Management science, 9(3), 458-467.
    13.Gao, Q. (2016). Stock market forecasting using recurrent neural network (Doctoral dissertation, University of Missouri--Columbia).
    14. Granger, C. W. (1969). Investigating causal relations by econometric models and. cross-spectral methods. Econometrica: ournal of the Econometric Society, 424-438.
    15. Guha, B., & Bandyopadhyay, G. (2016). Gold price forecasting using ARIMA model. Journal of Advanced Management Science, 4(2).
    16. Holland, J. H. (1975) Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor.
    17. Hopfield, J. J. (1982). Neural networks and physical systems with emergent. collective computational abilities. Proceedings of the national academy of sciences, 79(8), 2554-2558.
    18. Hrnjica, B., & Mehr, A. D. (2020). Energy demand forecasting using deep learning. In Smart Cities Performability, Cognition, & Security (pp. 71-104). Springer, Cham.
    19. Jordan, M. I. (1986). Serial order: A parallel distributed processing approach, Institute for Cognitive Science Report 8604, UC San Diego.
    20. Krenker, A., Bešter, J., & Kos, A. (2011). Introduction to the artificial neural networks. Artificial Neural Networks: Methodological Advances and Biomedical Applications. InTech, 1-18.
    21. Kristjanpoller, W., & Minutolo, M. C. (2016). Forecasting volatility of oil price using an artificial neural network-GARCH model. Expert Systems with Applications, 65, 233-241.
    22. Kumaresan, K., & Ganeshkumar, P. (2020). Software reliability prediction model with realistic assumption using time series (S) ARIMA model. Journal of Ambient Intelligence and Humanized Computing.
    23. Lewis, E. B. (1982). Control of body segment differentiation in Drosophila by the bithorax gene complex. In Genes, Development and Cancer (pp. 239-253). Springer, Boston, MA.
    24. Liu, Y., Roberts, M. C., & Sioshansi, R. (2018). A vector autoregression weather model for electricity supply and demand modeling. Journal of Modern Power Systems and Clean Energy, 6(4), 763-776.
    25. Liu, Y. H., Chang, W. S., & Chen, W. Y. (2019). Health progress and economic growth in the United States: the mixed frequency VAR analyses. Quality & Quantity, 53(4), 1895-1911.
    26. Maciel, L. (2018). Technical analysis based on high and low stock prices forecasts: Evidence for Brazil using a fractionally cointegrated VAR model. Empirical Economics, 1-28.
    27. McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent. in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115-133.
    28. Mentzer, J. T., & Moon, M. A. (2004). Sales forecasting management: a demand management approach. Sage Publications.
    29. Naccarato, A., Falorsi, S., Loriga, S., & Pierini, A. (2018). Combining official and Google Trends data to forecast the Italian youth unemployment rate. Technological Forecasting and Social Change, 130, 114-122.
    30. Nerlove, M., & Diebold, F. X. (1990). Autoregressive and Moving-average Time-series Processes. In Time Series and Statistics (pp. 25-35). Palgrave Macmillan, London.
    31. Nyoni, T. (2018). Box-Jenkins ARIMA approach to predicting net FDI inflows in Zimbabwe.
    32. Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386.
    33. Rogel-Salazar, J. (2020). Advanced Data Science and Analytics with Python. CRC Press.
    34. Santhosh, M., Venkaiah, C., & Kumar, D. V. (2018). Ensemble empirical mode decomposition based adaptive wavelet neural network method for wind speed prediction. Energy conversion and management, 168, 482-493.
    35. Sims, C. A. (1980). Macroeconomics and reality. Econometrica: Journal of the Econometric Society, 1-48.
    36. Tkáč, M., & Verner, R. (2016). Artificial neural networks in business: Two. decades of research. Applied Soft Computing, 38, 788-804.
    37. Walker, G. T. (1931). On Periodicity in Series of Related Terms. Proceedings of. the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 131(818), 518-532
    38. Weng, T., Liu, W., & Xiao, J. (2019). Supply chain sales forecasting based on lightGBM and LSTM combination model. Industrial Management & Data Systems, 120(2).
    39. Yule, G. U. (1926). Why do we sometimes get nonsense-correlations between Time-Series?--a study in sampling and the nature of time-series. Journal of the royal statistical society, 89(1), 1-63.
    40. Zhang, Y., Zhong, M., Geng, N., & Jiang, Y. (2017). Forecasting electric vehicles sales with univariate and multivariate time series models: The case of China. PloS one, 12(5), e0176729.
    41. Zurada, J. M. (1992). Introduction to artificial neural systems (Vol. 8). St. Paul: West.
    Description: 碩士
    國立政治大學
    企業管理研究所(MBA學位學程)
    107363105
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0107363105
    Data Type: thesis
    DOI: 10.6814/NCCU202000890
    Appears in Collections:[企業管理研究所(MBA學位學程)] 學位論文

    Files in This Item:

    File Description SizeFormat
    310501.pdf1874KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback