English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52551605      Online Users : 780
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/131355


    Title: 外送使用行為的影響因素調查
    Investigating the factors influencing the online food delivery service
    Authors: 廖緯霖
    Liao, Wei-Lin
    Contributors: 洪叔民
    白佩玉

    Horng, Shwu-Min
    Pai, Pei-Yu

    廖緯霖
    Liao, Wei-Lin
    Keywords: 美食外送平台
    共享經濟
    服務品質
    科技接受模型
    food delivery platform
    sharing economy
    service quality
    TAM
    Date: 2020
    Issue Date: 2020-08-03 18:43:37 (UTC+8)
    Abstract: 從 2018 年到 2019 年,台灣餐飲業呈現小幅成長,同時美食外送市場在整體的營業額佔比也逐漸提升,可見消費者對於美食外送服務的接受度逐漸提高。在眾多美食外送服務模式中,本研究以符合共享經濟概念的美食外送平台作為探討對象,這類平台不需自行開設餐廳且外送員上線時間不受平台管束,平台僅是資訊的串聯者,因此必須提供誘因吸引餐廳及外送員加入平台來為用戶提供服務。本研究探討平台服務品質、科技接受模型、個人因素對於用戶使用行為的影響,並以當前環境 COVID-19 疫情影響當作干擾變數,探討在疫情影響下用戶的使用行為,並提供平台業者在產品及服務模式的建議。
    本研究共收集 299 份有效問卷,透過多元迴歸統計方式驗證假說。研究結果發現,科技接受模型的「認知有用性與易用性」對於使用行為有正向顯著影響,其餘變數(平台可信度、服務提供者、社交互動、傾向節省價格、傾向節省時間)則無顯著影響;干擾效果中,「社交互動、認知有用性」存在負向的干擾效果、「認知易用性」存在正向的干擾效果。認知有用性與易用性是影響使用行為的主要因素,但目前服務範圍集中於商業區與使用者多為年輕族群,建議美食外送平台可以從兩個面向擴大市場;其他變數都無顯著影響,美食外送平台仍須提供相對應的服務,如:將消費者的資料妥善保管、對外送員定期提供訓練與更新規範,以讓外送員提供良好服務。在干擾效果中,建議美食外送平台在重大公衛事件發生時,用戶會為了減少干擾機會而避免出門,因此要想辦法減少外送員與用戶之間的接觸機會,以提高用戶的使用行為。
    From 2018 to 2019, Taiwanese catering industry showed a slight growth. At the same time, the share of the food delivery market accounted for the overall catering industry was gradually increasing. Obviously, consumers are more willing to use food delivery services. Among all of food delivery services, this study selects those food delivery platforms which under the concept of the sharing economy as the object of discussion. Those platforms don’t need to own any restaurants and the delivery partners are not fully organized by them. They are only a tandem of information, so they must provide incentives to attract restaurants and delivery partners to join the platform then provide services to users. This research explores the relationships among platform service quality, the factors in technology acceptance model and the personal factors, to better understand user behaviors in food delivery platform. Considering the current environment of COVID-19 epidemic, this research also adds this situation as a moderating variable to explore how the epidemic will affect the usage behavior.
    This research collected 299 valid questionnaires and the hypotheses were verified through multiple regression statistics. The study finds that “perceived usefulness and ease of use” in the technology acceptance model have a positive and significant impact on usage behavior. The remaining variables (legal protection and trustworthiness, peer service supplier, social interaction, price saving orientation, time saving orientation) have no significant impact on usage behavior.
    Among the moderation effects, “social interaction” and “perceived usefulness” have negative moderation effect and “perceived ease of use” has a positive moderation effect on usage behavior.
    Based on the result, “perceived usefulness” and “perceived ease of use” are the factors influence usage behavior. However, the current service area is still limited to business areas and users are mostly younger. This study recommends the platforms can expand their markets from these two perspectives. Though other factors have no significant impact on usage behavior, this study still suggests the platforms should perform on an average level, like well-organized users’ information, offer training and update guideline to the delivery partners then they will provide good services. In the moderation effect, this study recommends that the food delivery platform should avoid the interaction between users and delivery partners during the time of epidemic outbreak. Because everyone is afraid of getting affection, it will properly increase users’ behavior.
    Reference: 一、 中文文獻
    Kantar Insights Division 凱度洞察台灣 (2019), 外食市場 10 年間翻倍成長 美食外送服務會成為台灣人的新習慣嗎?。http://www.tns-global.com.tw/News_detail.php?nid=51
    Kantar Insights Division 凱度洞察台灣 (2020),Kantar凱度台灣 COVID-19疫情特輯:疫情帶來餐飲寒冬,美食外送平台逆勢成長。http://www.tns-global.com.tw/News_detail.php?nid=67
    王一芝 (2020),拒絕Uber Eats 50次、砸錢建串接系統 獨家直擊鼎泰豐外送5大心法,天下雜誌。https://www.cw.com.tw/article/article.action?from=search&id=5100666&template=transformers
    林珮萱、蕭玉品 (2019),業者不加入就賺不到錢?全家、星巴克、小吃店紛紛搶上外送平台,天下雜誌。https://www.gvm.com.tw/article/70019
    吳元熙 (2020),外送國家隊成軍挺1.1萬間餐廳,有哪些業者加入?影響是什麼?,數位時代。https://www.bnext.com.tw/article/57284/taiwan-food-delivery-team
    陳威珞 (2018),餐飲業發展趨勢,台灣趨勢研究股份有限公司,https://www.twtrend.com/share_cont.php?id=63
    經濟部統計處 (2019),108年批發、零售及餐飲業經營實況調查報告。https://www.moea.gov.tw/Mns/dos/bulletin/Bulletin.aspx?kind=28&html=1&menu_id=16959&bull_id=6384
    經濟部統計處 (2020),產業經濟統計簡訊。https://www.moea.gov.tw/MNS/populace/news/News.aspx?kind=1&menu_id=40&news_id=89173

    二、 英文文獻
    Agarwal, R., and Venkatesh, V. (2002). Assessing a firm`s Web presence: A heuristic evaluation procedure for the measurement of usability. Information Systems Research, 13(2), 168–186.
    Bai, J., So, K. C., Tang, C. S., Chen, X. M., & Wang, H. (2019). Time-Based Payout Ratio for Coordinating Supply and Demand on an On-Demand Service Platform. In Sharing Economy (pp. 115-136). Springer, Cham.
    Barnes, S. J., and Mattsson, J. (2016). Understanding current and future issues in collaborative consumption: A four-stage Delphi study. Technological Forecasting and Social Change, 104, 200-211.
    Benjaafar, S., Kong, G., Li, X., and Courcoubetis, C. (2019). Peer-to-peer product sharing. In Sharing Economy (pp. 11-36). Springer, Cham.
    Browne, M., and Mels, G. (1990). Ramona user’s guide, columbus: Department of psychology’. Ohio State University.
    Browne, M. W., and Arminger, G. (1995). Specification and estimation of mean-and covariance-structure models. In Handbook of statistical modeling for the social and behavioral sciences (pp. 185-249). Springer, Boston, MA.
    Cachon, G. P., Daniels, K. M., and Lobel, R. (2017). The role of surge pricing on a service platform with self-scheduling capacity. Manufacturing & Service Operations Management, 19(3), 368-384.
    Cheng, X., Fu, S., and de Vreede, G. J. (2018). A mixed method investigation of sharing economy driven car-hailing services: Online and offline perspectives. International Journal of Information Management, 41, 57–64.
    Chiu, C. M., Wang, E. T., Fang, Y. H., and Huang, H. Y. (2014). Understanding customers` repeat purchase intentions in B2C e‐commerce: the roles of utilitarian value, hedonic value and perceived risk. Information Systems Journal, 24(1), 85-114.
    Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
    De Stefano, V. (2015). The rise of the just-in-time workforce: On-demand work, crowdwork, and labor protection in the gig-economy. Comp. Lab. L. & Pol`y J., 37, 471.
    Ertz, M., Durif, F., and Arcand, M. (2016). Collaborative consumption: Conceptual snapshot at a buzzword. Journal of Entrepreneurship Education, 19(2), 1-23.
    Fornell, C., and Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50.
    Hu, M. (Ed.). (2019). Sharing economy: making supply meet demand (Vol. 6). Springer.
    Hu, L. T., and Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal, 6(1), 1-55.
    Jöreskog, K. G. (1970). A general method for analysis of covariance structures. Biometrika, 57(2), 239-251.
    Jöreskog, K. G., and Sörbom, D. (1989). LISREL 7: A guide to the program and applications. Spss.
    Kietzmann, J. H., Hermkens, K., McCarthy, I. P., & Silvestre, B. S. (2011). Social media? Get serious! Understanding the functional building blocks of social media. Business horizons, 54(3), 241-251.
    Laroche, M., Yang, Z., McDougall, G.H.G., Bergeron, J., 2005. Internet versus bricksand-mortar retailers: an investigation into intangibility and its consequences. J. Retail. 81 (4), 251 vers
    Liao, S. H. (2007). Electronic commerce technologies and applications-a decade review from 1995 to 2005. 電子商務學報, 9(2), 399-434.
    Marimon, F., Llach, J., Alonso-Almeida, M., & Mas-Machuca, M. (2019). CC-Qual: A holistic scale to assess customer perceptions of service quality of collaborative consumption services. International Journal of Information Management, 49, 130-141.
    McDonald, R. P., and Marsh, H. W. (1990). Choosing a multivariate model: Noncentrality and goodness of fit. Psychological bulletin, 107(2), 247.
    Monroe, K. B., and Lee, A. Y. (1999). Remembering versus knowing: Issues in buyers’ processing of price information. Journal of the Academy of Marketing Science, 27(2), 207-225.
    Parasuraman, A., Zeithaml, V. A., and Berry, L. L. (1985). A conceptual model of service quality and its implications for future research. Journal of marketing, 49(4), 41-50.
    Tunca, T. I. (2019). Operational Factors in the Sharing Economy: A Framework. In Sharing Economy (pp. 55-71). Springer, Cham.
    Ullman, J. B., and Bentler, P. M. (2003). Structural equation modeling. Handbook of psychology, 607-634
    Yaraghi, N., and Ravi, S. (2017). The current and future state of the sharing economy. Available at SSRN 3041207.
    Yeo, V. C. S., Goh, S. K., and Rezaei, S. (2017). Consumer experiences, attitude and behavioral intention toward online food delivery (OFD) services. Journal of Retailing and Consumer Services, 35, 150-162.
    Zhang, J., Chen, H., and Zhang, W. (2016). How to coordinate supply chain under O2O business model when demand deviation and retailer`s sales cost deviation happen. Piscataway: The Institute of Electrical and Electronics Engineers, Inc. (IEEE).
    Zwick, A. (2018). Welcome to the Gig Economy: Neoliberal industrial relations and the case of Uber. GeoJournal, 83(4), 679-691.
    Description: 碩士
    國立政治大學
    企業管理研究所(MBA學位學程)
    107363077
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0107363077
    Data Type: thesis
    DOI: 10.6814/NCCU202000881
    Appears in Collections:[企業管理研究所(MBA學位學程)] 學位論文

    Files in This Item:

    There are no files associated with this item.



    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback