English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52375927      Online Users : 395
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/131107
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/131107


    Title: 在高維度下受波氏分配自我相斥隨機漫步的均場行為
    Mean-field behavior for self-avoiding walks with Poisson interactions in high dimensions
    Authors: 王守朋
    Wang, Shou-Peng
    Contributors: 陳隆奇
    CHEN, LUNG-CHI
    王守朋
    Wang, Shou-Peng
    Keywords: 雖機漫步
    self-avoiding walk
    Date: 2020
    Issue Date: 2020-08-03 17:57:38 (UTC+8)
    Abstract: self-avoiding walk是線性聚合物的模型。它是機率和統計力學中一個重要而有趣的模型。一些重要問題已經解決(c.f.[5]). 然而,許多重要問題仍未解決,特別是涉及關鍵指數的問題,尤其是遠程模型的關鍵指數。
    在本文中,我們獲得了對於一個特殊的長域模型,其單步分佈是波松分佈的特殊敏感度模型,其敏感性指數滿足均值場行為,且其值大於上臨界值d(c) = 4 。參數 lambda > lambda(d) 的類型分佈,其中lambda(d)取決於維度。
    為此,我們選擇一組特殊的 bootstrapping functions,它們類似於[4],並使用lace expansion分析有關bootstrapping functions的複雜部分。 此外,對於d>4,我們得到lambda(d)的確切值。
    Self-avoiding walk is a model for linear polymers.
    It is an important and interesting model in Probability and Statistical mechanics.
    Some of the important problems had been solved (c.f.[5]). However,
    many of the important problems remain unsolved, particularly those involving critical exponents, especially the critical exponents for long-range models.
    In this thesis, we see Lace expansion to obtain that the critical exponent of the susceptibility satisfies the mean-field behavior with the dimensions above the upper critical dimension (d(c) = 4) for a special loge-range model in which each one-step distribution is the Poisson-type distribution with parameter lambda > lambda(d) where lambda(d) depends on the dimensions. To achieve this, we choose a particular set of bootstrapping functions which is similar as [4] and using a notoriously complicated part of the lace expansion analysis. Moreover we get the exactly value of lambda(d) for d > 4.
    Reference: [1] Roland Bauerschmidt, Hugo DuminilCopin,
    Jesse Goodman, and Gordon Slade. Lectures
    on selfavoiding
    walks, 2012.

    [2] David Brydges and Thomas Spencer. Selfavoiding
    walk in 5 or more dimensions.
    Communications in Mathematical Physics, 97(1):125–148, Mar 1985.

    [3] LungChi
    Chen and Akira Sakai. Critical twopoint
    function for longrange
    models
    with powerlaw
    couplings: The marginal case for $${d\\ge d_{\\rm c}}$$d≥dc.
    Communications in Mathematical Physics, 372(2):543–572, 2019.

    [4] Satoshi Handa, Yoshinori Kamijima, and Akira Sakai. A survey on the lace expansion
    for the nearestneighbor
    models on the bcc lattice. To appear in Taiwanese Journal of
    Mathematics, 2019.

    [5] Takashi Hara and Gordon Slade. Selfavoiding
    walk in five or more dimensions. i. the
    critical behaviour. Comm. Math. Phys., 147(1):101–136, 1992.

    [6] Takashi Hara, Remco van der Hofstad, and Gordon Slade. Critical twopoint
    functions and
    the lace expansion for spreadout
    highdimensional
    percolation and related models. Ann.
    Probab., 31(1):349–408, 01 2003.

    [7] Markus Heydenreich, Remco van der Hofstad, and Akira Sakai. Meanfield
    behavior
    for longand
    finite range ising model, percolation and selfavoiding
    walk. Journal of
    Statistical Physics, 132(6):1001–1049, 2008.

    [8] N. Madras and G. Slade. The SelfAvoiding
    Walk. Probability and Its Applications.
    Birkhäuser Boston, 1996.

    [9] Yuri Mejia Miranda and Gordon Slade. The growth constants of lattice trees and lattice
    animals in high dimensions, 2011.

    [10] A Sakai. Lace expansion for the Ising model. Technical Report mathph/
    0510093, Oct
    2005.

    [11] Akira Sakai. Meanfield
    critical behavior for the contact process. Journal of Statistical
    Physics, 104(1):111–143, Jul 2001.

    [12] Gordon Slade. The lace expansion and its applications, 2005.

    [13] Remco van der Hofstad, Frank den Hollander, and Gordon Slade. The survival probability
    for critical spreadout
    oriented percolation above 4+1 dimensions. ii. expansion. Annales
    de l’Institut Henri Poincare (B) Probability and Statistics, 43(5):509 – 570, 2007.

    [14] Doron Zeilberger. The abstract lace expansion, 1998.
    Description: 碩士
    國立政治大學
    應用數學系
    106751002
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0106751002
    Data Type: thesis
    DOI: 10.6814/NCCU202000775
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    100201.pdf558KbAdobe PDF2117View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback