Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/131107
|
Title: | 在高維度下受波氏分配自我相斥隨機漫步的均場行為 Mean-field behavior for self-avoiding walks with Poisson interactions in high dimensions |
Authors: | 王守朋 Wang, Shou-Peng |
Contributors: | 陳隆奇 CHEN, LUNG-CHI 王守朋 Wang, Shou-Peng |
Keywords: | 雖機漫步 self-avoiding walk |
Date: | 2020 |
Issue Date: | 2020-08-03 17:57:38 (UTC+8) |
Abstract: | self-avoiding walk是線性聚合物的模型。它是機率和統計力學中一個重要而有趣的模型。一些重要問題已經解決(c.f.[5]). 然而,許多重要問題仍未解決,特別是涉及關鍵指數的問題,尤其是遠程模型的關鍵指數。 在本文中,我們獲得了對於一個特殊的長域模型,其單步分佈是波松分佈的特殊敏感度模型,其敏感性指數滿足均值場行為,且其值大於上臨界值d(c) = 4 。參數 lambda > lambda(d) 的類型分佈,其中lambda(d)取決於維度。 為此,我們選擇一組特殊的 bootstrapping functions,它們類似於[4],並使用lace expansion分析有關bootstrapping functions的複雜部分。 此外,對於d>4,我們得到lambda(d)的確切值。 Self-avoiding walk is a model for linear polymers. It is an important and interesting model in Probability and Statistical mechanics. Some of the important problems had been solved (c.f.[5]). However, many of the important problems remain unsolved, particularly those involving critical exponents, especially the critical exponents for long-range models. In this thesis, we see Lace expansion to obtain that the critical exponent of the susceptibility satisfies the mean-field behavior with the dimensions above the upper critical dimension (d(c) = 4) for a special loge-range model in which each one-step distribution is the Poisson-type distribution with parameter lambda > lambda(d) where lambda(d) depends on the dimensions. To achieve this, we choose a particular set of bootstrapping functions which is similar as [4] and using a notoriously complicated part of the lace expansion analysis. Moreover we get the exactly value of lambda(d) for d > 4. |
Reference: | [1] Roland Bauerschmidt, Hugo DuminilCopin, Jesse Goodman, and Gordon Slade. Lectures on selfavoiding walks, 2012.
[2] David Brydges and Thomas Spencer. Selfavoiding walk in 5 or more dimensions. Communications in Mathematical Physics, 97(1):125–148, Mar 1985.
[3] LungChi Chen and Akira Sakai. Critical twopoint function for longrange models with powerlaw couplings: The marginal case for $${d\\ge d_{\\rm c}}$$d≥dc. Communications in Mathematical Physics, 372(2):543–572, 2019.
[4] Satoshi Handa, Yoshinori Kamijima, and Akira Sakai. A survey on the lace expansion for the nearestneighbor models on the bcc lattice. To appear in Taiwanese Journal of Mathematics, 2019.
[5] Takashi Hara and Gordon Slade. Selfavoiding walk in five or more dimensions. i. the critical behaviour. Comm. Math. Phys., 147(1):101–136, 1992.
[6] Takashi Hara, Remco van der Hofstad, and Gordon Slade. Critical twopoint functions and the lace expansion for spreadout highdimensional percolation and related models. Ann. Probab., 31(1):349–408, 01 2003.
[7] Markus Heydenreich, Remco van der Hofstad, and Akira Sakai. Meanfield behavior for longand finite range ising model, percolation and selfavoiding walk. Journal of Statistical Physics, 132(6):1001–1049, 2008.
[8] N. Madras and G. Slade. The SelfAvoiding Walk. Probability and Its Applications. Birkhäuser Boston, 1996.
[9] Yuri Mejia Miranda and Gordon Slade. The growth constants of lattice trees and lattice animals in high dimensions, 2011.
[10] A Sakai. Lace expansion for the Ising model. Technical Report mathph/ 0510093, Oct 2005.
[11] Akira Sakai. Meanfield critical behavior for the contact process. Journal of Statistical Physics, 104(1):111–143, Jul 2001.
[12] Gordon Slade. The lace expansion and its applications, 2005.
[13] Remco van der Hofstad, Frank den Hollander, and Gordon Slade. The survival probability for critical spreadout oriented percolation above 4+1 dimensions. ii. expansion. Annales de l’Institut Henri Poincare (B) Probability and Statistics, 43(5):509 – 570, 2007.
[14] Doron Zeilberger. The abstract lace expansion, 1998. |
Description: | 碩士 國立政治大學 應用數學系 106751002 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0106751002 |
Data Type: | thesis |
DOI: | 10.6814/NCCU202000775 |
Appears in Collections: | [應用數學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
100201.pdf | | 558Kb | Adobe PDF2 | 117 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|