Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/131105
|
Title: | 一個卡特蘭等式的重新審視 A Catalan Identity revisited |
Authors: | 李珮瑄 LEE, PEI-SHIUAN |
Contributors: | 李陽明 Chen, Young-Ming 李珮瑄 LEE,PEI-SHIUAN |
Keywords: | 卡特蘭等式 Dyck 路徑 Catalan identity Dyck path |
Date: | 2020 |
Issue Date: | 2020-08-03 17:57:15 (UTC+8) |
Abstract: | 本篇論文探討卡特蘭等式(n+2)Cn+1=(4n+2)Cn 證明方式以往都以計算方式推導得出,當我參加劉映君的口試時,發現她使用組合方法來證明這個等式。當我在尋找論文的主題時,讀到李陽明老師的一篇論文"The Chung Feller theorem revisited",發現Dyck 路徑也可以作為卡特蘭等式的組合證明,因此我們完成(n+2)Cn+1=(4n+2)Cn 的組合證明。 通過Dyck 路徑證明卡特蘭等式可以得到以下優勢: 1.子路徑C在切換過程中不會改變。 2.由於x1中的P的子路徑B為空,因此在交換Ad和Bu部分後,生成新的缺陷 必連接在原始子路徑C之後。 由於x2 中的Q 的子路徑A為空,因此在Bu交換和Ad部分後,生成新的提 升必連接在原始子路徑C之後。 3.在計算函數g1(g2) 的反函數的過程中,缺陷(提升)恢復模式必遵循 "後進先出"或"先進後出"規則。 When we first prove the Catalan identity, (n+2)Cn+1=(4n+2)Cn. We often prove it by calculation. When I participated in the oral examination of Ying-Jun Liu’s essay, I found that she used a combinatorial proof to prove this identity.When I was looking for the subject of the thesis, I read a paper by professor Young-Ming Chen, "The Chung Feller theorem revisited", which found that Dyck paths could also be used as a combinatorial proof of the Catalan identity. Therefore, we completed the combinatorial proof of (n+2)Cn+1=(4n + 2)Cn. Proving the Catalan identity through the Dick paths can reveal the following advantages: 1.The subpath C does not change during the process of switching of the portions Ad and Bu. 2.Since the subpath B of P in x1 is empty, a new flaw generated after switching of the portions Ad and Bu must be followed by the original subpath C. Since the subpath A of Q in x2 is empty, a new lift generated after switching of the portions Bu and Ad must be followed by the original subpath C. 3.In the process of computing the preimage of a function g1 (g2), the flaws (lifts) recovery mode follows the "Last in First out" or "First in Last out". |
Reference: | [1] 劉映君. 一個卡特蘭等式的組合證明, 2017. [2] Ronald Alter. Some remarks and results on catalan numbers. 05 2019. [3] Ronald Alter and K.K Kubota. Prime and prime power divisibility of catalan numbers. Journal of Combinatorial Theory, Series A, 15(3):243 – 256, 1973. [4] Federico Ardila. Catalan numbers. The Mathematical Intelligencer, 38(2):4–5, Jun 2016. [5] Young-Ming Chen. The chung–feller theorem revisited. Discrete Mathematics, 308:1328– 1329, 04 2008. [6] Ömer Eğecioğlu. A Catalan-Hankel determinant evaluation. In Proceedings of the Fortieth Southeastern International Conference on Combinatorics, Graph Theory and Computing, volume 195, pages 49–63, 2009. [7] R. Johnsonbaugh. Discrete Mathematics. Pearson/Prentice Hall, 2009. [8] Thomas Koshy. Catalan numbers with applications. Oxford University Press, Oxford, 2009. [9] Tamás Lengyel. On divisibility properties of some differences of the central binomial coefficients and Catalan numbers. Integers, 13:Paper No. A10, 20, 2013. [10] Youngja Park and Sangwook Kim. Chung-Feller property of Schröder objects. Electron. J. Combin., 23(2):Paper 2.34, 14, 2016. [11] Matej Črepinšek and Luka Mernik. An efficient representation for solving Catalan number related problems. Int. J. Pure Appl. Math., 56(4):589–604, 2009. |
Description: | 碩士 國立政治大學 應用數學系 104751012 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0104751012 |
Data Type: | thesis |
DOI: | 10.6814/NCCU202000719 |
Appears in Collections: | [應用數學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
101201.pdf | | 490Kb | Adobe PDF2 | 91 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|