English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114014/145046 (79%)
Visitors : 52055756      Online Users : 99
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/131105
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/131105


    Title: 一個卡特蘭等式的重新審視
    A Catalan Identity revisited
    Authors: 李珮瑄
    LEE, PEI-SHIUAN
    Contributors: 李陽明
    Chen, Young-Ming
    李珮瑄
    LEE,PEI-SHIUAN
    Keywords: 卡特蘭等式
    Dyck 路徑
    Catalan identity
    Dyck path
    Date: 2020
    Issue Date: 2020-08-03 17:57:15 (UTC+8)
    Abstract: 本篇論文探討卡特蘭等式(n+2)Cn+1=(4n+2)Cn 證明方式以往都以計算方式推導得出,當我參加劉映君的口試時,發現她使用組合方法來證明這個等式。當我在尋找論文的主題時,讀到李陽明老師的一篇論文"The Chung Feller theorem revisited",發現Dyck 路徑也可以作為卡特蘭等式的組合證明,因此我們完成(n+2)Cn+1=(4n+2)Cn 的組合證明。
    通過Dyck 路徑證明卡特蘭等式可以得到以下優勢:
    1.子路徑C在切換過程中不會改變。
    2.由於x1中的P的子路徑B為空,因此在交換Ad和Bu部分後,生成新的缺陷
    必連接在原始子路徑C之後。
    由於x2 中的Q 的子路徑A為空,因此在Bu交換和Ad部分後,生成新的提
    升必連接在原始子路徑C之後。
    3.在計算函數g1(g2) 的反函數的過程中,缺陷(提升)恢復模式必遵循
    "後進先出"或"先進後出"規則。
    When we first prove the Catalan identity, (n+2)Cn+1=(4n+2)Cn. We often prove it by calculation. When I participated in the oral examination of Ying-Jun Liu’s essay, I found that she used a combinatorial proof to prove this identity.When I was looking for the subject of the thesis, I read a paper by professor Young-Ming Chen, "The Chung Feller theorem revisited", which found that Dyck paths could also be used as a combinatorial proof of the Catalan identity. Therefore, we completed the combinatorial proof of (n+2)Cn+1=(4n + 2)Cn.
    Proving the Catalan identity through the Dick paths can reveal the following advantages:
    1.The subpath C does not change during the process of
    switching of the portions Ad and Bu.
    2.Since the subpath B of P in x1 is empty, a new flaw
    generated after switching of the portions Ad and Bu must
    be followed by the original subpath C.
    Since the subpath A of Q in x2 is empty, a new lift
    generated after switching of the portions Bu and Ad must
    be followed by the original subpath C.
    3.In the process of computing the preimage of a function g1
    (g2), the flaws (lifts) recovery mode follows the "Last in First out" or "First in Last out".
    Reference: [1] 劉映君. 一個卡特蘭等式的組合證明, 2017.
    [2] Ronald Alter. Some remarks and results on catalan numbers. 05 2019.
    [3] Ronald Alter and K.K Kubota. Prime and prime power divisibility of catalan numbers.
    Journal of Combinatorial Theory, Series A, 15(3):243 – 256, 1973.
    [4] Federico Ardila. Catalan numbers. The Mathematical Intelligencer, 38(2):4–5, Jun 2016.
    [5] Young-Ming Chen. The chung–feller theorem revisited. Discrete Mathematics, 308:1328–
    1329, 04 2008.
    [6] Ömer Eğecioğlu. A Catalan-Hankel determinant evaluation. In Proceedings of the Fortieth
    Southeastern International Conference on Combinatorics, Graph Theory and Computing,
    volume 195, pages 49–63, 2009.
    [7] R. Johnsonbaugh. Discrete Mathematics. Pearson/Prentice Hall, 2009.
    [8] Thomas Koshy. Catalan numbers with applications. Oxford University Press, Oxford,
    2009.
    [9] Tamás Lengyel. On divisibility properties of some differences of the central binomial
    coefficients and Catalan numbers. Integers, 13:Paper No. A10, 20, 2013.
    [10] Youngja Park and Sangwook Kim. Chung-Feller property of Schröder objects. Electron.
    J. Combin., 23(2):Paper 2.34, 14, 2016.
    [11] Matej Črepinšek and Luka Mernik. An efficient representation for solving Catalan number
    related problems. Int. J. Pure Appl. Math., 56(4):589–604, 2009.
    Description: 碩士
    國立政治大學
    應用數學系
    104751012
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0104751012
    Data Type: thesis
    DOI: 10.6814/NCCU202000719
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    101201.pdf490KbAdobe PDF291View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback