English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114014/145046 (79%)
Visitors : 52057100      Online Users : 805
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/129213
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/129213


    Title: 基於深度強化學習的智能存貨控制:以高科技供應鏈為例
    A Deep Reinforcement Learning approach for Intelligent Inventory Control in high-tech supply chains
    Authors: 廖信堯
    Liao, Hsin-Yao
    Contributors: 莊皓鈞
    Chuang, Hao-Chun
    廖信堯
    Liao, Hsin-Yao
    Keywords: 強化學習
    深度學習
    庫存最佳化
    模擬
    作業管理
    Reinforcement learning
    Deep learning
    Inventory optimization
    Simulation
    Operations management
    Date: 2020
    Issue Date: 2020-04-06 14:44:04 (UTC+8)
    Abstract: Machine learning is revolutionizing business operations across industry sectors. Among different learning techniques, deep reinforcement learning (DRL) has received broad attention in recent years due to the salient performance of AlphaGo, an artificial intelligence (AI) system empowered by DRL. DRL is a model-free and data-driven approach to develop near-optimal policies for sequential decision-making problems. Intrigued by the success of DRL in various fields, we, in this study, assess the applicability of DRL to multi-period inventory control under stochastic demand, which is a classical Markov Decision Process problem. Working with the largest distributor of electronics manufacturing services (EMS) in the world, we propose deep Q-networks (DQN) for intelligent inventory control (IIC). Facing erratic and non-stationary demand for electronic components with limited market life cycle, the distributor could not infer the exact demand distribution and solve the inventory optimization problem analytically in a finite-horizon with lost sales setting. Hence, we develop DQN by specifying relevant state and decision inputs, and then designing a data-driven simulation environment, in which the agent is trained over thousands of episodes. For trained items, DQN outperforms the benchmark in a few ways. First, DQN can reduce the total inventory by at least 40% while achieving better service level. Second, when penalty parameter increases, DQN can effectively reduce the amount of out-of-stock. While we transfer trained DQN into testing sets, within the same item, the out-of-sample performance is excellent. For other unseen items, we use the Maximum Entropy Bootstrap to train ensemble DDQN and make our DRL agent more robust. Given the promising results in our experiments, we discuss implications, limitations, and further directions for applying DRL/DQN to business decision-making problems.
    Reference: Arulkumaran, K., Deisenroth, P. M., Brundage, M., & Bharath, A. A. (2017) A brief survey of deep reinforcement learning. ArXiv: 1708.05866v2.
    Chaharsooghi, S., Heydari, J., & Zegordi, S. (2008) A reinforcement learning model for supply chain ordering management: An application to the beer game. Decision Support Systems, 45(4): 949-959.
    Chollet, F. (2017) Deep Learning with Python. Manning Publications.
    Giannoccaro, I., & Pontrandolfo, P. (2002) Inventory management in supply chains: A reinforcement learning approach. International Journal of Production Economics, 78(2): 153-161.
    Gijsbrechts, J., Boute, R., Zhang, D., & Van Mieghem, J. (2019) Can Deep Reinforcement Learning Improve Inventory Management? Performance on Dual Sourcing, Lost Sales and Multi-Echelon Problems. Available at SSRN https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3302881.
    Gosavi, A. (2009) Reinforcement learning: A tutorial survey and recent advances. INFORMS Journal on Computing, 21(3): 177-345.
    Kingma, D. P., & Ba, J. (2017). Adam: A Method for Stochastic Optimization. ArXiv:1412.6980v9.
    Lin, L. J. (1992) Self-improving reactive agents based on reinforcement learning, planning and teaching. Machine Learning, 8(3-4): 293-321.
    Mnih V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013) Playing Atari with deep reinforcement learning. ArXiv:1312.5602v1.
    Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., & Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D. (2015) Human-level control through deep reinforcement learning. Nature, 518: 529-533.
    Oroojlooyjadid, A., Snyder, L., & Takáč, M. (2019) Applying deep learning to the newsvendor problem. IISE Transactions, in press.
    Oroojlooyjadid, A., Nazari, M., Snyder, L., & Takáč, M. (2019b) A deep Q-Network for the beer game: A deep reinforcement learning algorithm to solve inventory optimization problems. ArXiv:1708.05924v3.
    Porteus, E. L. (2002) Foundations of Stochastic Inventory Theory. Stanford University Press, California.
    Qi, X., Wu, G., Boriboonsomsin, K., Barth, M. J., & Gonder, J. (2016) Data-driven reinforcement learning–based real-time energy management system for plug-in hybrid electric vehicles. Transportation Research Record, 2572(1), 1-8.
    Schaul, T., Quan, J., Antonoglou, I., & Silver, D. (2015). Prioritized Experience Replay. ArXiv: 1511.05952v4.
    Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T., Hassabis, D. (2017) Mastering the game of Go without human knowledge. Nature 550: 354-359.
    Sutton, R. S. and Barto, A. G. (2018) Reinforcement Learning: An Introduction. Second edition, MIT Press, Cambridge.
    Van Hasselt, H., Guez, A., and Silver, D. (2015). Deep Reinforcement Learning with Double Q-Learning. ArXiv:1509.06461.
    Vinod, H.D. and Lòpez-de-Lacalle, J. (2009). Maximum entropy bootstrap for time series. The meboot R Package. J. Stat. Softw., 29 (2009), pp. 1-19
    Description: 碩士
    國立政治大學
    資訊管理學系
    107356003
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0107356003
    Data Type: thesis
    DOI: 10.6814/NCCU202000375
    Appears in Collections:[資訊管理學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    600301.pdf1760KbAdobe PDF2141View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback