English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114104/145136 (79%)
Visitors : 52225836      Online Users : 315
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/129212
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/129212


    Title: 應用機器學習於促進利差交易收益之預測
    Machine learning for improving the predictability
 of returns on carry trade
    Authors: 林亞璇
    Lin, Ya-Hsuan
    Contributors: 蔡瑞煌
    盧敬植

    Tsaih, Rua-Huan
    Lu, Ching-Chih

    林亞璇
    Lin, Ya-Hsuan
    Keywords: 利差交易
    機器學習
    類神經網路
    Carry Trade
    Artificial Neural Networks
    Machine Learning
    GPU
    TensorFlow
    Date: 2018
    Issue Date: 2020-04-06 14:43:51 (UTC+8)
    Abstract: 過去二十年來,全球化使得國際資金流量變得越來越方便因為其帶來了巨量的國際貿易。隨之而來的是海外金融市場增加了大量的投資。外匯交易市場擁有幾乎全天都能進行交易的特性,投資者能利用這種便利性投注資金在不同貨幣的利率差上,因此在許多不同的投資工具中,貨幣利差交易(carry trade)越來越受歡迎。近年來它已經成為一項利潤豐厚的業務,有一些國家為了刺激經濟而將利率降至接近於零,而其他國家仍然維持高利率來應對通貨膨脹,這造就了利率差的產生。在經濟相關的文獻中,大多數貨幣利差交易研究仍然使用線性回歸模型來研究貨幣利差交易的時間序列可預測性,而沒有識別資料集中可能存在的複雜非線性關係。本研究嘗試通過實作更複雜的人工神經網絡(ANN)模型來改變這種情況。我們將透過文獻探討確認預測利差交易收益的因子,然後採用能夠有效進行資料清理和機器學習的ANN機制來預測利差交易的回報。由於資料具有時間序列的特徵,我們增加移動視窗(moving window)在機制裡以利學習和忘記來增加預測資料的有效性。為了加速學習,我們還使用TensorFlow和GPU來實現ANN機制。
    In the past two decades, globalization makes it easy for international cash flows because of huge volume of international trades. Along came the vast amount of foreign investments in the financial markets. Among those many different investment vehicles, currency carry trades became popular because foreign exchange markets now work around the clock and investors have used that convenience to take advantage of the difference between interest rates in different currencies. It has become a lucrative business in recent years because some countries cut their interest rates close to zero to stimulate their economy, while other countries still have high interest rates to combat inflation. In the economic literature of carry trades, most studies still use linear regression models to explore the time-series predictability of currency carry trades without identifying possible complex nonlinear relationships in data sets. This study tries to change that by implementing a more sophisticated Artificial Neural Networks (ANN) model. We connect the economic literature on the factors that predicts the profitability of carry trades and then adopt an ANN mechanism that can effectively conduct data cleaning and machine learning to predict the returns on carry trades. Since data has all time-series features, we add the moving window mechanism to facilitate learning and forgetting to increase the effectiveness of predictability. In order to speed up the learning, we also use TensorFlow and GPU to implement the ANN mechanism.
    Reference: Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., . . . Isard, M. (2016). TensorFlow: A System for Large-Scale Machine Learning. Paper presented at the OSDI.
    Adrian, T., Etula, E., & Shin, H. S. (2010). Risk appetite and exchange rates.
    Asness, C. S., Moskowitz, T. J., & Pedersen, L. H. (2013). Value and momentum everywhere. The Journal of Finance, 68(3), 929-985.
    Babaeizadeh, M., Frosio, I., Tyree, S., Clemons, J., & Kautz, J. (2016). Reinforcement learning through asynchronous advantage actor-critic on a gpu.
    Bakshi, G., & Panayotov, G. (2013). Predictability of currency carry trades and asset pricing implications. Journal of Financial Economics, 110(1), 139-163.
    Barzdins, G., Renals, S., & Gosko, D. (2016). Character-Level Neural Translation for Multilingual Media Monitoring in the SUMMA Project. arXiv preprint arXiv:1604.01221.
    Bessembinder, H. (1994). Bid-ask spreads in the interbank foreign exchange markets. Journal of Financial Economics, 35(3), 317-348.
    Bilson, J. F. (1981). The" speculative efficiency" hypothesis. Journal of Business, 54(3), 435–451.
    Bilson, J. F. (2013). Adventures in the Carry Trade. Retrieved from http://www.cmegroup.com/education/files/bilson-adventures-in-the-carry-trade.pdf
    Brunnermeier, M. K., Nagel, S., & Pedersen, L. H. (2008). Carry trades and currency crashes. NBER macroeconomics annual, 23(1), 313-348.
    Burnside, C., Eichenbaum, M., Kleshchelski, I., & Rebelo, S. (2006). The returns to currency speculation. Retrieved from
    Burnside, C., Eichenbaum, M., Kleshchelski, I., & Rebelo, S. (2010). Do peso problems explain the returns to the carry trade? The Review of Financial Studies, 24(3), 853-891.
    Campbell, J. Y. (1990). A variance decomposition for stock returns. Retrieved from
    Cenedese, G., Sarno, L., & Tsiakas, I. (2014). Foreign exchange risk and the predictability of carry trade returns. Journal of Banking & Finance, 42, 302-313.
    Chen, Y.-C., Rogoff, K. S., & Rossi, B. (2010). Can exchange rates forecast commodity prices? The Quarterly Journal of Economics, 125(3), 1145-1194.
    Clarida, R., Davis, J., & Pedersen, N. (2009). Currency carry trade regimes: Beyond the Fama regression. Journal of International Money and Finance, 28(8), 1375-1389.
    Cumby, R. E., & Obstfeld, M. (1981). A note on exchange‐rate expectations and nominal interest differentials: A test of the Fisher hypothesis. The Journal of Finance, 36(3), 697-703.
    Curcuru, S., Vega, C., & Hoek, J. (2010). Measuring carry trade activity. IFC Bulletin, 25, 436.
    Dacorogna, M. M., Müller, U. A., Nagler, R. J., Olsen, R. B., & Pictet, O. V. (1993). A geographical model for the daily and weekly seasonal volatility in the foreign exchange market. Journal of International Money and Finance, 12(4), 413-438.
    Daniel, K., Hodrick, R. J., & Lu, Z. (2017). The carry trade: Risks and drawdowns. Critical Finance Review, 6(2), 211-262.
    Darvas, Z. (2009). Leveraged carry trade portfolios. Journal of Banking & Finance, 33(5), 944-957.
    Engel, C. (1996). The forward discount anomaly and the risk premium: A survey of recent evidence. Journal of empirical finance, 3(2), 123-192.
    Fama, E. F. (1984). Forward and spot exchange rates. Journal of monetary economics, 14(3), 319-338.
    Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on concept drift adaptation. ACM computing surveys (CSUR), 46(4), 44.
    Groen, J. J., & Pesenti, P. A. (2011). Commodity prices, commodity currencies, and global economic developments. Paper presented at the Commodity Prices and Markets, East Asia Seminar on Economics, Volume 20.
    Hansen, L. P., & Hodrick, R. J. (1980). Forward exchange rates as optimal predictors of future spot rates: An econometric analysis. Journal of political economy, 88(5), 829-853.
    Hsieh, D. A., & Kleidon, A. W. (1996). Bid-ask spreads in foreign exchange markets: Implications for models of asymmetric information The Microstructure of Foreign Exchange Markets (pp. 41-72): University of Chicago Press.
    Huang, S.-Y., Lin, J.-W., & Tsaih, R.-H. (2016). Outlier detection in the concept drifting environment. Paper presented at the Neural Networks (IJCNN), 2016 International Joint Conference on.
    Huang, S.-Y., Yu, F., Tsaih, R.-H., & Huang, Y. (2014). Resistant learning on the envelope bulk for identifying anomalous patterns. Paper presented at the Neural Networks (IJCNN), 2014 International Joint Conference on.
    Jurek, J. W. (2014). Crash-neutral currency carry trades. Journal of Financial Economics, 113(3), 325-347.
    Kearns, J. (2007). Commodity currencies: why are exchange rate futures biased if commodity futures are not? Economic Record, 83(260), 60-73.
    Lin, J.-W. (2015). A Decision Support Mechanism for Outlier Detection in the Concept Drifting Environment. (Unpublished Master Thesis), National Chengchi University, Taipei.
    Lin, T. C. (2015). Infinite financial intermediation. Wake Forest L. Rev., 50, 643.
    Lustig, H., Roussanov, N., & Verdelhan, A. (2011). Common risk factors in currency markets. The Review of Financial Studies, 24(11), 3731-3777.
    Meese, R. A., & Rogoff, K. (1983). Empirical exchange rate models of the seventies: Do they fit out of sample? Journal of international economics, 14(1-2), 3-24.
    Mishkin, F. S. (2006). Economics of Money, Banking, and Financial Markets. Boston, MA: Addison-Wesley.
    Niimi, T. (2016). Recent Trends in Foreign Exchange (FX) Margin Trading in Japan. Retrieved from
    Parloff, R. (2016). Why Deep learning is suddenly changing your life. Retrieved from http://fortune.com/ai-artificial-intelligence-deep-machine-learning
    Puri, M., Pathak, Y., Sutariya, V. K., Tipparaju, S., & Moreno, W. (2015). Artificial Neural Network for Drug Design, Delivery and Disposition: Academic Press.
    Rasmussen, C. E. (2004). Gaussian processes in machine learning Advanced lectures on machine learning (pp. 63-71): Springer, Berlin, Heidelberg.
    Robert C. Feenstra, A. M. T. (2008). International Macroeconomics. New York, NY: Worth Publishers.
    Sarno, L. (2005). Towards a solution to the puzzles in exchange rate economics: Where do we stand? Canadian Journal of Economics/Revue canadienne d`économique, 38(3), 673-708.
    Shehadeh, A., Erdős, P., Li, Y., & Moore, M. (2016). US Dollar Carry Trades in the Era of`Cheap Money`. Retrieved from SSRN: https://ssrn.com/abstract=2765552 or http://dx.doi.org/10.2139/ssrn.2765552
    Sill, K. (2000). Understanding asset values: stock prices, exchange rates, and the “Peso Problem”. Business review.
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., . . . Rabinovich, A. (2015). Going deeper with convolutions.
    Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R. (2013). Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199.
    Terada, T., Higashio, N., & Iwasaki, J. (2008). Recent trends in Japanese foreign-exchange margin trading. Exchange, 200, 250.
    Trippi, R. R., & Turban, E. (1992). Neural networks in finance and investing: Using artificial intelligence to improve real world performance: McGraw-Hill, Inc.
    Tsaih, R.-H., & Cheng, T.-C. (2009). A resistant learning procedure for coping with outliers. Annals of Mathematics and Artificial Intelligence, 57(2), 161-180.
    Tu, J. V. (1996). Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Journal of clinical epidemiology, 49(11), 1225-1231.
    Wu, J. (2017). Application of Machine Learning to Predicting the Returns of Carry Trade. (Unpublished Master Thesis), National Chengchi University, Taipei.
    Description: 碩士
    國立政治大學
    資訊管理學系
    105356031
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0105356031
    Data Type: thesis
    DOI: 10.6814/NCCU202000390
    Appears in Collections:[資訊管理學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    603101.pdf1306KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback