English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51717066      Online Users : 598
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 心理學系 > 期刊論文 >  Item 140.119/129034
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/129034


    Title: 社群媒體上分手文章的性別差異:文本分析取徑
    A Text Analysis Approach to Analyzing Gender Differences in Breakup Posts on Social Media
    Authors: 楊立行
    Yang, Lee-Xieng
    許清芳
    Sheu, Ching-Fan
    Contributors: 心理系
    Keywords: 文本分析 ; 社群媒體 ; 性別差異 ; 開放式詞彙分析 
    gender differences;social media ; stylometric analysis ; text analysis
    Date: 2019-09
    Issue Date: 2020-03-02 15:25:52 (UTC+8)
    Abstract: 本研究以台灣社群媒體上的分手文章為分析對象,比較兩種使用於文本分析的詞彙分析方式用於區辨作者性別時的優劣。使用封閉式詞彙分析時,本研究根據過去研究,以中文版LIWC詞典中的人稱代名詞與非代名詞類為預測變項,分別建立邏輯迴歸模型預測作者性別。結果顯示,人稱代名詞有較佳的預測力;唯其無法反映分手的特性。使用開放式詞彙分析時,本研究以寫作風格分析的演算法,直接從分手文章中找出最能代表不同性別的關鍵詞。結果發現即使只選取前1%的關鍵詞建立模型,模型的表現也優於以封閉式詞彙分析建立之模型。接著,針對各性別關鍵詞所對應的中文LIWC詞類,分別進行網路分析。根據網路節點的中間度指標,本研究發現動詞、副詞、關係詞、社交歷程詞、生理歷程詞和認知歷程詞為兩性分手文章中共有的LIWC心理語文特徵;但唯獨女性才有情感歷程詞、性詞和否定詞。由此推知,台灣社群媒體使用者中,女性比男性在文章中更有情感方面的表現。
    Two approaches to text analysis have been applied in the current work to investigate gender differences in breakup posts on social media in Taiwan. First, we calculated the probabilities of the types of words, such as personal pronoun and other word categories based on the Chinese Linguistic Inquiry and Word Count(LIWC), occurring in the posts to predict author`s gender. The results showed that personal pronoun outperformed other word types at predicting gender for social media break-up posts. Second, we conducted stylometric analysis on these posts to extract keywords for different gender. The occurring probabilities of these keywords were then used to predict the author`s gender of the post. The results showed that including keywords in the top one percent as predictors enabled a model to perform better than the first approach. A network analysis was carried out, respectively, for each gender to examine the psychological and linguistic features of these keywords and their relationship with reference to the Chinese LIWC. The typical features, defined in terms of the centrality indices, such as word types of verb, adverb, relative, social process, biological process and cognitive mechanism were found to be common for both gender. However, features of affection words, sexual words, and negate words showed up only for breakup posts authored by females. We conclude that among Taiwanese users of social media females were more likely than males to make affective statements.
    Relation: 中華心理學刊, Vol.61, No.3, pp.209-230
    Data Type: article
    DOI 連結: https://doi.org/ 10.6129/CJP.201909_61(3).0003
    DOI: 10.6129/CJP.201909_61(3).0003
    Appears in Collections:[心理學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    13.pdf2113KbAdobe PDF2332View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback