政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/128984
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113873/144892 (79%)
造訪人次 : 51940173      線上人數 : 563
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/128984


    題名: 影音串流平台之創新擴散模型研究-以Netflix和Spotify為例
    Innovation Diffusion Models of Streaming Media : A Case Study of Netflix and Spotify
    作者: 劉湝沂
    Liu, Chieh-Yi
    貢獻者: 吳豐祥
    Wu, Feng-Shang
    劉湝沂
    Liu, Chieh-Yi
    關鍵詞: 影音串流
    串流平台
    創新擴散模型
    成長曲線
    video streaming
    streaming platform
    innovation diffusion model
    growth curves
    日期: 2019
    上傳時間: 2020-03-02 11:36:27 (UTC+8)
    摘要: 影音串流平台為近五年開始蓬勃發展的服務類型,在網際網路的技術穩定和智慧型行動裝置的普及化下,影音串流服務之接收品質有效提升,且串流平台本身具有高度的跨國性及流通性,使得全球之影音串流訂閱戶在2018年正式超越了有線電視的訂閱戶,電視媒體衰弱而串流服務崛起,影音串流平台逐漸走向媒體服務的主流市場,因此串流平台的用戶擴散及其創新擴散模式已成為現今之重要研究議題。
    本研究透過文獻探討選取了Gompertz Model、Bass Model及將網路使用人數作為基礎擴散的Contingent Diffusion Model作為研究模型,欲探討影音串流平台之用戶擴散是否適用創新擴散模型來探討其成長趨勢,並透過觀察目前發展最為快速,也累積最多用戶數的兩影音串流平台—Netlfix和Spotify,了解影視串流和音樂串流服務是否有不同的創新擴散模式,以及延伸過去學者對於最適解釋模型和最佳預測模型之質疑,探討影音串流平台所適用之解釋模型和預測模型是否如先前學者之結論確實有差異。本研究透過判定係數和修訂Theil不等係數來檢測模型之解釋能力,而模型預測能力則使用MAPE值衡量。
    經實證研究後發現,影音串流平台確實可以透過創新擴散模型觀察其成長趨勢,且如同過去學者針對耐久財之結論,影音串流平台的最適解釋模型和最佳預測模型確實不同,顯示模型的解釋能力和預測能力並不具有絕對的關係;最後,本研究亦發現串流平台中的不同的服務類型差異並不會影響模型的解釋和預測結果,且付費用戶和免費用戶適用於不同的創新擴散模型,付費用戶容易受到口碑效應影響,而廣告用戶成長速度較快,會隨著網路使用人數增加而大幅度成長,因此企業在進行用戶分群時可以針對不同訴求而採取不一樣之行銷行為。
    The video streaming platform is a type of service that has been booming in the past five years. With the stability of internet and popularization of smart mobile devices, the quality of video streaming services has been effectively improved, leading to the global video streaming subscribers officially surpassed the users of cable TV in 2018. The video streaming platforms are gradually moving towards to mainstream market of media services so users` growth of streaming platforms and its diffusion trend have become important topics nowadays.
    This study explored the Gompertz Model, Bass Model, and Contingent Diffusion Model which uses the number of users on the Internet as a basis for research, to explore whether the user growth of the video streaming platform is applicable to the innovation diffusion model. Through observing number of subscribers of Netflix and Spotify, the two fast-growing video streaming platforms, the study discussed whether video streaming and music streaming services has different results on the innovation diffusion models. Besides, according to the query of scholars, the research also discussed whether explanatory and forecast model is the same model. It took the coefficient of determination and the Theil inequality coefficient to determine the goodness-of-fit and used the Mean Absolute Percentage Error to measure forecasting performance of these models.
    In the light of the empirical research, the study considered that video streaming platforms can be observed through the innovation diffusion model, moreover, it found the fittest explanatory model and the best forecast model of video streaming platforms are different, no matter the result is from Netflix or Spotify. It indicated that the goodness-of-fit and forecasting ability of models is not absolutely relevant. Last but not least, this study also found that different service types in the streaming platform will not affect the interpretation and prediction results of the model, and paying users and free users are applicable to different innovation diffusion models. To be precise, paying users are susceptible to word-of-mouth effects, and free users grow significantly with the increase in the number of internet users. Therefore, companies can adopt different marketing strategies for different target audiences.
    參考文獻: 英文文獻

    Bass, F. M. (1969). A new product growth for model consumer durables. Management Science, Vol. 15, No. 5,, 215-227.
    Bass, F. M., Krishnan, T. V., & Jain, D. C. (1994). Why the Bass model fits without decision variables. Marketing Science, 13(3), 203-223.
    Bayus, B. L. (1987). Forecasting sales of new contingent products: An application to the compact disc market. Journal of Product Innovation Management, 4(4), 243-255.
    BEREC. (2016). BEREC Report on OTT services.
    Bucklin, L. P., & Sengupta, S. (1993). The co-diffusion of complementary innovations: Supermarket scanners and UPC symbols. Journal of Product Innovation Management, 10(2), 148-160.
    Chun, S. Y., & Hahn, M. (2008). A diffusion model for products with indirect network externalities. Journal of Forecasting, 27(4), 357-370.
    Eisenmann, T., Parker, G., & Van Alstyne, M. W. (2006). Strategies for two-sided markets. Harvard Business Review, 84(10), 92.
    Evans, D. S., Schmalensee, R., Noel, M. D., Chang, H. H., & Garcia-Swartz, D. D. (2011). Platform economics: Essays on multi-sided businesses. Competition Policy International.
    Farrell, J., & Saloner, G. (1985). Economic issues in standardization.
    FCC. (2017). Annual Assessment of the Status of Competition in the Market for the Delivery of Video Programming.
    Fourt, L. A., & Woodlock, J. W. (1960). Early prediction of market success for new grocery products. Journal of Marketing, 25(2), 31-38.
    Franses, P. H. (1994). Modeling new product sales: An application of cointegration analysis. International Journal of Research in Marketing, 11(5), 491-502.
    Gatignon, H., Eliashberg, J., & Robertson, T. S. (1989). Modeling multinational diffusion patterns: An efficient methodology. Marketing Science, 8(3), 231-247.
    Giovanis, A., & Skiadas, C. (1999). A Stochastic logistic innovation diffusion model studying the electricity consumption in Greece and the United States. Technological Forecasting and Social Change, 61(3), 235-246.
    Gompertz, B. (1825). XXIV. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. FRS &c. Philosophical Transactions of the Royal Society of London, (115), 513-583.
    Griliches, Z. (1957). Hybrid corn: An exploration in the economics of technological change. Econometrica, Journal of the Econometric Society, 501-522.
    Gupta, S., Jain, D. C., & Sawhney, M. S. (1999). Modeling the evolution of markets with indirect network externalities: An application to digital television. Marketing Science, 18(3), 396-416.
    Hardie, B. G., Fader, P. S., & Wisniewski, M. (1998). An empirical comparison of new product trial forecasting models. Journal of Forecasting, 17(3‐4), 209-229.
    Horsky, D. (1990). A diffusion model incorporating product benefits, price, income and information. Marketing Science, 9(4), 342-365.
    Horsky, D., & Simon, L. S. (1983). Advertising and the diffusion of new products. Marketing Science, 2(1), 1-17.
    Idland, E., Øverby, H., & Audestad, J. A. (2015). Economic markets for video streaming services: A case study of Netflix and Popcorn Time. Paper presented at the NIK 2015 Conference.
    Jain, D., Mahajan, V., & Muller, E. (1991). Innovation diffusion in the presence of supply restrictions. Marketing Science, 10(1), 83-90.
    Jain, D. C., & Rao, R. C. (1990). Effect of price on the demand for durables: Modeling, estimation, and findings. Journal of Business & Economic Statistics, 8(2), 163-170.
    Jones, J. M., & Ritz, C. J. (1991). Incorporating distribution into new product diffusion models. International Journal of Research in Marketing, 8(2), 91-112.
    Jun, D. B., & Park, Y. S. (1999). A choice-based diffusion model for multiple generations of products. Technological Forecasting and Social Change, 61(1), 45-58.
    Kalish, S. (1983). Monopolist pricing with dynamic demand and production cost. Marketing Science, 2(2), 135-159.
    Kalish, S. (1985). A new product adoption model with price, advertising, and uncertainty. Management Science, 31(12), 1569-1585.
    Kalish, S., & Lilien, G. L. (1986). A market entry timing model for new technologies. Management Science, 32(2), 194-205.
    Kalish, S., & Sen, S. K. (1986). Diffusion models and the marketing mix for single products. Innovation Diffusion Models of New Product Acceptance, 87-115.
    Kamakura, W. A., & Balasubramanian, S. K. (1988). Long-term view of the diffusion of durables A study of the role of price and adoption influence processes via tests of nested models. International Journal of Research in Marketing, 5(1), 1-13.
    Katz, M. L., & Shapiro, C. (1985). Network externalities, competition, and compatibility. American Economic Review, 75(3), 424-440.
    Kiiski, S., & Pohjola, M. (2002). Cross-country diffusion of the Internet. Information Economics and Policy, 14(2), 297-310.
    Kurawarwala, A. A., & Matsuo, H. (1998). Product growth models for medium-term forecasting of short life cycle products. Technological Forecasting and Social Change, 57(3), 169-196.
    Kwaśnicki, W., & Kwaśnicka, H. (1996). Long-term diffusion factors of technological development: An evolutionary model and case study. Technological Forecasting and Social Change, 52(1), 31-57.
    Kwon, M., & Lee, S. (2015). Substitute or disruptive innovation: Current status, issues, and forecasting of N-screen & OTT service. Studies of Broadcasting Culture, 27(1), 9-37.
    Lekvall, P., & Wahlbin, C. (1973). A study of some assumptions underlying innovation diffusion functions. The Swedish Journal of Economics, 362-377.
    Lilien, G. L., Rao, A. G., & Kalish, S. (1981). Bayesian estimation and control of detailing effort in a repeat purchase diffusion environment. Management Science, 27(5), 493-506.
    Lindbladh, E., Lyttkens, C. H., Hanson, B. S., & Östergren, P.-O. (1997). The diffusion model and the social-hierarchical process of change. Health Promotion International, 12(4), 323-330.
    Little, D., & Global, L. (2014). The future of the internet-innovation and investment in IP interconnection. Liberty Global.
    Lu, Y. W. (2008). Internet Innovation Diffusion. (Doctor), National Sun Yat-sen University, Taipei,Taiwan.
    Mahajan, V., & Muller, E. (1998). When is it worthwhile targeting the majority instead of the innovators in a new product launch? Journal of Marketing Research, 35(4), 488-495.
    Mahajan, V., Muller, E., & Bass, F. M. (1990). New product diffusion models in marketing: A review and directions for research. The Journal of Marketing, Vol. 54, No. 1, 1-26.
    Mahajan, V., Muller, E., & Kerin, R. A. (1984). Introduction strategy for new products with positive and negative word-of-mouth. Management Science, 30(12), 1389-1404.
    Mahajan, V., & Peterson, R. A. (1978). Innovation diffusion in a dynamic potential adopter population. Management Science, 24(15), 1589-1597.
    Mahajan, V., & Peterson, R. A. (1979). Integrating time and space in technological substitution models. Technological Forecasting and Social Change, 14(3), 231-241.
    Mahajan, V., Wind, Y., & Sharma, S. (1983). An doption to repeat purchase diffusion models. Paper presented at the AMA Proceeding Series.
    Mäkinen, S. J., Kanniainen, J., & Peltola, I. (2014). Investigating adoption of free beta applications in a platform‐based business ecosystem. Journal of Product Innovation Management, 31(3), 451-465.
    Malthus, T. (1798). An essay on the principle of population. Printed for J. Johnson. St Paul’s church-yard, London, 1-126.
    Mansfield, E. (1961). Technical change and the rate of imitation. Econometrica: Journal of the Econometric Society, 741-766.
    Martin, C. A., & Witt, S. F. (1989). Forecasting tourism demand: A comparison of the accuracy of several quantitative methods. . International Journal of Forecasting, 5.1, 7-19.
    Martino, J. P. (1993). Technological Forecasting for Decision Making: McGraw-Hill, Inc.
    Meade, N. (1984). The use of growth curves in forecasting market development—A review and appraisal. Journal of Forecasting, 3(4), 429-451.
    Meade, N., & Islam, T. (1998). Technological forecasting—Model selection, model stability, and combining models. Management Science, 44(8), 1115-1130.
    Meade, N., & Islam, T. (2001). Forecasting the diffusion of innovations: Implications for time-series extrapolation. In Principles of Forecasting (pp. 577-595): Springer.
    Meade, N., & Islam, T. (2006). Modeling and forecasting the diffusion of innovation–A 25-year review. International Journal of Forecasting, 22(3), 519-545.
    Midgley, D. F. (1976). A simple mathematical theory of innovative behavior. Journal of Consumer Research, 31-41.
    Norton, J. A., & Bass, F. M. (1987). A diffusion theory model of adoption and substitution for successive generations of high-technology products. Management Science, 33(9), 1069-1086.
    OECD. (2013). OECD Communications Outlook 2013. Retrieved from OECD:
    Olson, J., & Choi, S. (1985). A product diffusion model incorporating repeat purchases. Technological Forecasting and Social Change, 27(4), 385-397.
    Pae, J. H., & Lehmann, D. R. (2003). Multigeneration innovation diffusion: The impact of intergeneration time. Journal of the Academy of Marketing Science, 31(1), 36.
    Parker, G. G., Van Alstyne, M. W., & Choudary, S. P. (2016). Platform Revolution: How Networked Markets Are Transforming The Economy and How To Make Them Work For You: WW Norton & Company.
    Parker, P. (1992). Pricing strategies in markets with dynamic elasticities. Marketing Letters, 3(3), 227-237.
    Pearl, R. (1924). The curve of population growth. Proceedings of the American Philosophical Society, 63(1), 10-17.
    Pearl, R., & Reed, L. J. (1920). On the rate of growth of the population of the United States since 1790 and its mathematical representation. Proceedings of the National Academy of Sciences of the United States of America, 6(6), 275.
    Peitz, M., & Valletti, T. (2015). Reassessing competition concerns in electronic communications markets. Telecommunications Policy, 39(10), 896-912.
    Putsis Jr, W. P., Balasubramanian, S., Kaplan, E. H., & Sen, S. K. (1997). Mixing behavior in cross-country diffusion. Marketing Science, 16(4), 354-369.
    Putsis Jr, W. P., & Srinfvasan, V. (2000). Estimation techniques for macro diffusion models. New-Product Diffusion Models, 11.
    Rao, A. G., & Yamada, M. (1988). Forecasting with a repeat purchase diffusion model. Management Science, 34(6), 734-752.
    Robinson, B., & Lakhani, C. (1975). Dynamic price models for new-product planning. Management Science, 21(10), 1113-1122.
    Rochet, J.-C., & Tirole, J. (2004). Two-sided markets: an overview. Institut d’Economie Industrielle Working Paper.
    Rogers, E. M. (1962). Diffusion of innovations.
    Rogers, E. M. (2003). Diffusion of Innovations. The Free Press, New York, Fifth Edition.
    Rohlfs, J. (1974). A theory of interdependent demand for a communications service. The Bell Journal of Economics and Management Science, 16-37.
    Schmittlein, D. C., & Mahajan, V. (1982). Maximum likelihood estimation for an innovation diffusion model of new product acceptance. Marketing Science, Vol. 1, No. 1 57-78.
    Sharif, M. N., & Ramanathan, K. (1981). Binomial innovation diffusion models with dynamic potential adopter population. Technological Forecasting and Social Change, 20(1), 63-87.
    Sharif, M. N., & Ramanathan, K. (1982). Polynomial innovation diffusion models. Technological Forecasting and Social Change, 21(4), 301-323.
    Simon, H., & Sebastian, K.-H. (1987). Diffusion and advertising: the German telephone campaign. Management Science, 33(4), 451-466.
    Srinivasan, V., & Mason, C. H. (1986). Technical note—Nonlinear least squares estimation of new product diffusion models. Marketing Science, 5(2), 169-178. doi:10.1287/mksc.5.2.169
    Srivastava, R. K., Mahajan, V., Ramaswami, S. N., & Cherian, J. (1985). A multi-attribute diffusion model for forecasting the adoption of investment alternatives for consumers. Technological Forecasting and Social Change, 28(4), 325-333.
    Talukdar, D., Sudhir, K., & Andrew, A. (2002). Investigating new product diffusion across products and countries. Marketing Science, Vol. 21, No. 1 97-114.
    Theil, H. (1958). Economic forecasts and policy.
    Theil, H. (1965). The analysis of disturbances in regression analysis. Journal of the American Statistical Association, 60(312), 1067-1079.
    Tornatzky, L. G., & Klein, K. J. (1982). Innovation characteristics and innovation adoption-implementation: A meta-analysis of findings. IEEE Transactions on Engineering Management, (1), 28-45.
    Trappey, C. V., & Wu, H.-Y. (2008). An evaluation of the time-varying extended logistic, simple logistic, and Gompertz models for forecasting short product lifecycles. Advanced Engineering Informatics, 22(4), 421-430.
    Weerahandi, S., & Dalal, S. R. (1992). A choice-based approach to the diffusion of a service: Forecasting fax penetration by market segments. Marketing Science, 11(1), 39-53.
    Weibull, W. (1951). A statistical distribution function of wide applicability. Journal of Applied Mechanics, 18(3), 293-297.


    中文文獻

    王核成、應波 (2013)。 基於消費者採納網絡的網上購物擴散模型—以中國網上購物為例。系統工程, 第31卷第1期,頁 78-84。
    朱文伶(2010a)。行動電話擴散研究之模型選用及驅動因子分析。國立政治大學科技管理研究所。
    朱文伶(2010b)。行動電話擴散研究之模型選用及驅動因子分析。國立政治大學國立政治大學科技管理研究所。
    吳家豪、江明晏(2019)。中國OTT來台搶市 戰火一觸即發,中央通訊社。 取自 https://www.cna.com.tw/news/firstnews/201903150297.aspx
    李嘉泰(2019)。手機遊戲成長趨勢之研究-不同產業層級分析之異同。國立政治大學科技管理與智慧財產研究所。
    杜偉娟 (2011)。 基於logistic模型的全球電動汽車市場發展預測研究。赤峰學院學報。
    林茂雄(2015)。從創新擴散理論分階段探討國家寬頻發展影響因素。國立政治大學科技管理與智慧財產研究所。
    林靖、薛榮棠 (2006)。 創新擴散理論模式之應用─以數位相機、行動電話產業為例。2006第10屆科際整合管理研討會,頁 652-669。
    徐賢浩、劉田、艾陽 (2013)。 市場潛量隨網購人數變化的需求擴散模型研究。工業工程與管理, 第18卷 第二期,頁 12-16。
    秦偉翔 (2015)。 線上影音平台發展趨勢與商機。 MIC AISP 情報顧問服務。
    國家通訊傳播委員會 (2018)。 107通訊傳播市場調查 (第 10頁)。
    張彬、楊國英、榮國輝 (2002)。 產品擴散模型在internet採用者分析中的應用。Chinese Journal of Management Science, 第十卷 第二期,頁 51-56。
    曹碩(2017)。微信產品創新擴散模型研究。哈爾濱工業大學管理科學與工程。
    陳莞筑(2017)。以資源基礎觀點探討我國 OTT 經營策略—以酷瞧為例。國立臺灣藝術大廣播電視學系應用媒體藝術。
    陳瑋庭(2018)。境外 OTT 網路影視服務平台之內容產製策略分析-以愛奇藝台灣站為例。國立高雄科技大學國立高雄科技大學文化創意產業所。
    傅榮、王佩珊 (2018)。 基於改進創新擴散模型的移動互聯網產品迭代擴散研究。科技管理研究, 2018年第23期,頁 94-100。
    喬迅 (2010)。 基於附隨擴散模型的個人網上銀行擴散實證研究。Technological Development of Enterprise, 第29卷 第九期,頁 76-78。
    黃惠綺(2011)。以非線性成長曲線模型預測全球Fabless之晶圓需求量。國立交通大學管理學院碩士在職專班管理科學組。
    楊超、危懷安 (2016)。 三種生長模型在微信活躍用戶數上的比較研究。中國科技論壇。
    楊雅婷(2018)。OTT 影音平台的使用者以整合科技接受與資訊系統成功模式探討行為意圖與付費意願。國立政治大學傳播學院傳播碩士學位學程。
    楊敬輝、武春友 (2006)。 附隨擴散模型及其對移動上網用戶擴散的實證研究。管理評論, 第18卷 第十期,頁 18-22。
    葉志良 (2015)。 我國線上影音內容管制的再塑造:從OTT的發展談起。資訊社會研究 ISSN ,頁 47-91。
    資誠聯合會計師事務所 (2019)。 2018全球與臺灣娛樂暨媒體業展望報告 。
    趙振霞 (2018)。 基於改進Bass模型的網購用戶擴散研究。商業經濟 , 第507期,頁 18-40。
    劉輝輝、柴躍廷、劉義 (2010)。 基於擴散模型的電子商務平臺規模分析與預測。統計與決策, 第323期,頁 68-70。
    數位時代(2019)。影音串流大未來。數位時代,第301期。
    黎瑞昌(2006)。新產品擴散模式之探討—以電源線通訊為例。國立臺北大學企業管理學系。
    賴祥蔚(2016)。我見我思-本土OTT元年?,中國時報。 取自 https://www.chinatimes.com/newspapers/20160214000298-260109?chdtv
    顏理謙(2017)。OTT大戰第二回合開打,抗盜版、拚獨家成兩大重點。數位時代。
    描述: 碩士
    國立政治大學
    科技管理與智慧財產研究所
    1063641331
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G1063641331
    資料類型: thesis
    DOI: 10.6814/NCCU202000347
    顯示於類別:[科技管理與智慧財產研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    133101.pdf2138KbAdobe PDF2194檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋