政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/127217
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113869/144892 (79%)
造访人次 : 51892342      在线人数 : 585
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/127217


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/127217


    题名: 基於超連結圖譜表示法學習之跨領域音樂推薦演算法
    Cross-domain music recommendation based on superhighway graph embedding
    作者: 楊昇芳
    Yang, Sheng-Fang
    贡献者: 蔡銘峰
    Tsai, Ming-Feng
    楊昇芳
    Yang, Sheng-Fang
    关键词: 網路表示法
    推薦系統
    特徵值學習
    遷移學習
    Network embedding
    Recommendation systems
    Feature learning
    Transfer learning
    日期: 2019
    上传时间: 2019-11-06 15:27:40 (UTC+8)
    摘要: 近年來大數據以及機器學習技術的蓬勃發展,推薦系統被廣泛應用於各種實務上,而音樂串流系統中的音樂推薦也變成一項具有挑戰性的工作,尤其在各個不同市場中,群體的聆聽習慣也會有所不同。因此,我們使用了異質性網路表示法學習( Heterogeneous Information Network Embedding ),可以將網路中不同類型之節點投影於低維度向量空間中,並基於此空間來完成後續相關之音樂推薦工作。又因對於新開發市場,用戶與歌曲聆聽紀錄等互動的資訊極為稀少且會因少數用戶而影響整體推薦的傾向,這便稱為資料的「稀疏性」問題,而資料的稀疏性通常是實務上一個很具有挑戰性的任務,其對於推薦系統整體的推薦效果影響是很巨大的。於是,本論文提出了一個基於異質性網路表示法學習的音樂推薦系統,透過加入網路資訊較為豐富的市場作為輔助來幫助改進新開發市場之推薦效果。
    In recent years, big data and machine learning technology have been rapidly growing, and recommendation systems have been widely used in various real-world applications, such as music recommendation in music streaming services. However, for different domains, the recommneder systems will be different, because of the distinct user behavior data. Therefore, this thesis aims to use Heterogeneous Information Network Embedding to project the nodes in a network/domain into another network/domain on the basis of the low-dimension representations of the nodes. Therefore, this paper proposes a cross-domain music recommendation approach based on heterogeneous information network representation learning, the idea of which is to enrich the new domain/market data by using a well developed domain/market.
    參考文獻: [1] G. Adomavicius and A. Tuzhilin. Towards the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Transac- tions on Knowledge and Data Engineering, 17(6):734–749, June 2005.
    [2] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell., 35(8):1798–1828, Aug. 2013.
    [3] B. Bocsi, L. Csato ́, and J. Peters. Alignment-based transfer learning for robot mod- els. pages 1–7, 08 2013.
    [4] R. Burke. Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction, 12(4):331–370, Nov. 2002.
    [5] C.-M. Chen, M.-F. Tsai, Y.-C. Lin, and Y.-H. Yang. Query-based music recom- mendations via preference embedding. In Proceedings of the 10th ACM Conference on Recommender Systems, RecSys ’16, pages 79–82, New York, NY, USA, 2016. ACM.
    [6] C.-M. Chen, Y.-H. Yang, Y. Chen, and M.-F. Tsai. Vertex-context sampling for weighted network embedding. arXiv preprint arXiv:1711.00227, 2017.
    [7] P. Cremonesi, A. Tripodi, and R. Turrin. Cross-domain recommender systems. In
    Proceedings of the 2011 IEEE 11th International Conference on Data Mining Work- shops, ICDMW ’11, pages 496–503, Washington, DC, USA, 2011. IEEE Computer Society.
    [8] W. Dai, Q. Yang, G.-R. Xue, and Y. Yu. Self-taught clustering. In Proceedings of the 25th International Conference on Machine Learning, ICML ’08, pages 200–207, New York, NY, USA, 2008. ACM.
    [9] Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backpropagation. In Proceedings of the 32Nd International Conference on International Conference on Machine Learning - Volume 37, ICML’15, pages 1180–1189. JMLR.org, 2015.
    [10] C. Gao, X. Chen, F. Feng, K. Zhao, X. He, Y. Li, and D. Jin. Cross-domain recom- mendation without sharing user-relevant data. In The World Wide Web Conference, WWW ’19, pages 491–502, New York, NY, USA, 2019. ACM.
    [11] A. Grover and J. Leskovec. Node2vec: Scalable feature learning for networks. In
    Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pages 855–864, New York, NY, USA, 2016. ACM.
    [12] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, ICDM ’08, pages 263–272, Washington, DC, USA, 2008. IEEE Computer Society.
    [13] Y.Koren,R.Bell,andC.Volinsky.Matrixfactorizationtechniquesforrecommender systems. Computer, 42(8):30–37, Aug. 2009.
    [14] K. Lai, T. Wang, H. Chi, Y. Chen, M. Tsai, and C. Wang. Superhighway: Bypass data sparsity in cross-domain CF. CoRR, abs/1808.09784, 2018.
    [15] B. Li, Q. Yang, and X. Xue. Can movies and books collaborate?: Cross-domain collaborative filtering for sparsity reduction. In Proceedings of the 21st Interna- tional Jont Conference on Artifical Intelligence, IJCAI’09, pages 2052–2057, San Francisco, CA, USA, 2009. Morgan Kaufmann Publishers Inc.
    [16] J. McAuley, C. Targett, Q. Shi, and A. van den Hengel. Image-based recommen- dations on styles and substitutes. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’15, pages 43–52, New York, NY, USA, 2015. ACM.
    [17] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed represen- tations of words and phrases and their compositionality. In Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2, NIPS’13, pages 3111–3119, USA, 2013. Curran Associates Inc.
    [18] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Trans. on Knowl. and Data Eng., 22(10):1345–1359, Oct. 2010.
    [19] M. J. Pazzani and D. Billsus. The adaptive web. chapter Content-based Recommen- dation Systems, pages 325–341. Springer-Verlag, Berlin, Heidelberg, 2007.
    [20] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social repre- sentations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14, pages 701–710, New York, NY, USA, 2014. ACM.
    [21] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: Trans- fer learning from unlabeled data. In Proceedings of the 24th International Confer- ence on Machine Learning, ICML ’07, pages 759–766, New York, NY, USA, 2007. ACM.
    [22] S. Rendle. Factorization machines. In Proceedings of the 2010 IEEE International Conference on Data Mining, ICDM ’10, pages 995–1000, Washington, DC, USA, 2010. IEEE Computer Society.
    [23] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr: Bayesian personalized ranking from implicit feedback. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI ’09, pages 452–461, Ar- lington, Virginia, United States, 2009. AUAI Press.
    [24] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: An open architecture for collaborative filtering of netnews. pages 175–186. ACM Press, 1994.
    [25] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. Line: Large-scale infor- mation network embedding. In Proceedings of the 24th International Conference on World Wide Web, WWW ’15, pages 1067–1077, Republic and Canton of Geneva, Switzerland, 2015. International World Wide Web Conferences Steering Committee.
    [26] Y. Zhang, Q. Ai, X. Chen, and W. B. Croft. Joint representation learning for top- n recommendation with heterogeneous information sources. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM ’17, pages 1449–1458, New York, NY, USA, 2017. ACM.
    描述: 碩士
    國立政治大學
    資訊科學系
    106753011
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0106753011
    数据类型: thesis
    DOI: 10.6814/NCCU201901201
    显示于类别:[資訊科學系] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    301101.pdf1820KbAdobe PDF286检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈