政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/127161
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113648/144635 (79%)
造访人次 : 51626623      在线人数 : 567
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 資訊學院 > 資訊科學系 > 期刊論文 >  Item 140.119/127161


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/127161


    题名: Short-Term PM2.5 Forecasting Using Exponential Smoothing Method: A Comparative Analysis
    作者: 蔡子傑
    Tsai, Tzu-Chieh
    Mahajan, Sachit*
    Chen, Ling-Jyh
    贡献者: 資科系
    关键词: Internet of Things; air quality forecast; PM2.5; Smart Cities
    日期: 2018-09
    上传时间: 2019-10-30 10:26:53 (UTC+8)
    摘要: Air pollution is a global problem and can be perceived as a modern-day curse. One way of dealing with it is by finding economical ways to monitor and forecast air quality. Accurately monitoring and forecasting fine particulate matter (PM2.5) concentrations is a challenging prediction task but Internet of Things (IoT) can help in developing economical and agile ways to design such systems. In this paper, we use a historical data-based approach to perform PM2.5 forecasting. A forecasting method is developed which uses exponential smoothing with drift. Experiments and evaluation were performed using the real-time PM2.5 data obtained from large scale deployment of IoT devices in Taichung region in Taiwan. We used the data from 132 monitoring stations to evaluate our model’s performance. A comparison of prediction accuracy and computation time between the proposed model and three widely used forecasting models was done. The results suggest that our method can perform PM2.5 forecast for 132 monitoring stations with error as low as 0.16 μ g/ m3 and also with an acceptable computation time of 30 s. Further evaluation was done by forecasting PM2.5 for next 3 h. The results show that 90 % of the monitoring stations have error under 1.5 μ g/ m3 which is significantly low. 
    關聯: Sensors, Vol.18, No.10, pp.3223:1-15
    数据类型: article
    DOI 連結: https://doi.org/10.3390/s18103223
    DOI: 10.3390/s18103223
    显示于类别:[資訊科學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    237.pdf1837KbAdobe PDF2357检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈