政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/126580
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 114105/145137 (79%)
造访人次 : 52157087      在线人数 : 554
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/126580


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/126580


    题名: 基於語境特徵及分群模型之中文多義詞消歧
    Using contextual information in clustering Chinese word senses
    作者: 周子皓
    Chou, Tzu Hao
    贡献者: 劉昭麟
    賴惠玲

    Liu, Chao Lin
    Lai, Huei Lling

    周子皓
    Chou, Tzu Hao
    关键词: 多義詞
    一詞多義
    同形異義
    分群
    詞向量
    句向量
    Lexical ambiguity
    Polysemy
    Homonym
    Clustering
    Word vector
    Sentence vector
    日期: 2019
    上传时间: 2019-10-03 17:17:45 (UTC+8)
    摘要: 多義詞為語言中常見的現象,如英語中的‘bank’,既可表示「銀行」又可表示「河岸」;‘bass’,既可表示「鱸魚」又可表示「電吉他」,而在中文中「黃牛」,既可表示「普通的牛」又可表示「非法仲介人」。而在目前,對於多義詞義項的了解主要透過辭典以及檢索系統,但是,時常仍會有不足的情況,對於辭典,一般收錄較規範化的使用方式以及無法時刻更新。因此對於詞彙較新穎的義項以及較口語的使用方式,辭典並不一定包含;此外對於檢索系統,以中央研究院平衡語料庫檢索系統為例,此系統會將目標詞彙的相關句提供使用者,但是,對於多義詞的義項,使用者必須閱讀所有的相關句後才能得知,其在語料庫中的義項。同時,目前多義詞研究中,人文學者需逐一檢視所擷取出的相關句,並根據人工進行判讀,才能將相關句依據義項進行分群。
    因此在本研究中,透過使用者提供之少量參考句,並且依據purity值選取最優之分群模型以及參數設置,透過此分群模型尋找語料庫中更多與參考句相同義項之相關句,並且依據目標詞彙之義項作為分群之依據,減少人文學者逐一判讀相關句所需之時間。
    同時,研究中為了觀察是否會因多義詞的類型不同而致使分群的效果以及embedding的結果會有所不同,因此於同形異義(homonym)選取「亞馬遜」、「蘋果」、「小米」、「火箭」、「東西」,作為研究對象;一詞多義(polysemy) 選取「出入」、「出發」、「壓力」、「溫暖」、「東西」,作為研究對象。
    Lexical ambiguityis a common language phenomenon. In English, the word bank can refer to the bank which we save our money or a river bank. In Chinese, the term cattle(黃牛) can stand for either a cattle or a scalper.
    Currently the understanding of lexical ambiguity terms come from either the dictionary or a search system. However, there are often times where a dictionary or a search system is not enough. Dictionaries have a standard procedure for including content and once the dictionary has been published it cannot be updated frequently. Therefore, dictionaries can fail to include new definitions or verbal usage. For search systems, using the Academia Sinica’s database as an example, users are required to read through all related sentences to understand related meanings. Current research on lexical ambiguity requires researchers to examine sentences, extract term meanings and cluster them one by one.
    In this study, the best clustering model and variables are selected based on purity values derived from references provided by the user. Then, the selected clustering model is used to find more terms and references with similar meanings from the database. Finally, the terms will be clustered according to selected meanings.
    This study also observes whether different types of lexical ambiguity will affect the results of clustering and embedding. Therefore, this study chooses homonym such as amazon and apple, polysemy’s such as departure and pressure as research subjects. This study hopes to reduce the time needed for researchers to examine sentences, extract term meanings and cluster them one by one in lexical ambiguity researches.
    參考文獻: 一. 中文部分
    [1] 中文維基百科。2007。中文維基百科。檢自:zhwiki-latest-pages-articles.xml.bz2。
    [2] 肖航。2011。教材語料詞義分佈量化考察。第十二屆漢語詞彙語義學研討會。
    [3] 吳美嫺。2010。《長阿含經》雙音詞研究。碩士論文。國立東華大學,花蓮縣,臺灣。
    [4] 林育增。2016。繁體版 Jieba。檢自:https://github.com/ldkrsi/jieba-zh_TW。
    [5] 林香薇。2016。閩南語歌仔冊中的多義詞「落 loh8」。師大學報,第 61 卷,第2 期,1-28。
    [6] 許尤芬。2012。中文多義詞「發」之語義探討:以語料庫為本。碩士論文。臺北市立教育大學,臺北市,臺灣。
    [7] 蔡宛玲。2016。漢語多義詞「跑」之結構及語意分析。碩士論文。國立政治大學,臺北市,臺灣。
    [8] 賴惠玲。2017。語意學(初版)。臺北:五南。
    二. 英文部分
    [9] David Arthur and Sergei Vassilvitskii. 2007. K-means++:The Advantages of Careful Seeding. In Proceedings of the 18th annual ACM-SIAM symposium on Discrete algorithms . SIAM, Philadelphia, PA, USA, 1027-1035.
    [10]Pavel Berkhin. 2006. A Survey of Clustering Data Mining Techniques. Springer,Berlin, Heidelberg, 25-71.
    [11]Yiu-Ming Cheung. 2003. K*-Means:A New Generalized K-means Clustering Algorithm. Pattern Recognition Letters, Volume 24, Issue 15. ELSEVIER,Amsterdam, Nederland, 2883-2893.
    [12]Wilm Donath and Alan Hoffman. 1973. Lower Bounds for the Partitioning of Graphs. IBM Journal of Research and Development, Volume 17, Issue 5. IBM,
    Amonk, NY, USA, 420-425.
    [13]Miroslav Fiedler. 1973. Algebraic Connectivity of Graphs. Czechoslovak
    Mathematical Journal, Volume 23. Matematický ústav, Nové Město, Česko, 298-305.
    [14]Leonard Kaufman and Peter Rousseeuw. 1990. Finding Groups in Data: An
    Introduction to Cluster Analysis. Wiley, New York, NY, USA.
    [15]Shao-Hang Kao and Zhao-Ming Gao. 2007. Feature Selections in Word Sense
    Disambiguation. In Proceedings of the 19th Conference on Computational
    Linguistics and Speech Processing. ACLCLP, Taipei, Taiwan, 131-144.
    [16]Cuong Anh Le and Akira Shimazu. 2004. High WSD Accuracy Using Naïve
    Bayesian Classifier with Rich Features. In Proceedings of the 18th Pacific Asia
    Conference on Language, Information and Computation. LLSJ, Tokyo, Japan,104-114.
    [17]Quoc Le and Tomas Mikolov. 2014. Distributed Representations of Sentences and
    Documents. In Proceedings of the 31st International Conference on International
    Conference on Machine Learning, Volume 32. JMLR, USA, 1188-1196.
    [18]Michael Lesk. 1986. Automatic Sense Disambiguation Using Machine Readable
    Dictionaries:How to Tell a Pine Cone from an Ice Cream Cone. In Proceedings
    of the 5th Annual Conference on Systems Documentation. ACM, New York, NY, USA, 24–26.
    [19]John Lyons. 1977. Semantics. Cambridg. Cambridge University Press.
    [20]Wei-Yun Ma and Keh-Jiann Chen. 2003. Introduction to CKIP Chinese Word
    Segmentation System for the First International Chinese Word Segmentation
    Bakeoff. In Proceedings of the 2nd SIGHAN Workshop on Chinese Language
    Processing, Volume 17. ACL, Stroudsburg, PA, USA, 168-171.
    [21]James MacQueen. 1967. Some Methods for Classification and Analysis of
    Multivariate Observations. In Proceedings of the 5th Berkeley Symposium on
    Mathematical Statistics and Probability, Volume 1. University of California Press,
    Oakland, CA, USA, 281-297.
    [22]Christopher Manning, Prabhakar Raghavan and Hinrich Schütze. 2009. An
    Introduction to Information Retrieval. Cambridge University Press, Cambridge,
    Cambs, England.
    [23]Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado and Jeffrey Dean. 2013.
    Distributed Representations of Words and Phrases and Their Compositionality. In
    Proceedings of the 26th International Conference on Neural Information
    Processing Systems, Volume 2. Curran Associates, Red Hook, NY, USA, 3111-3119.
    [24]Roberto Navigli. 2009. Word Sense Disambiguation:A Survey. ACM Computing
    Surveys, Volume 41, Issue 2. ACM, New York, NY, USA, 1-69.
    [25]Andrew Ng, Michael Jordan, and Yair Weiss. 2001. On Spectral Clustering Analysis
    and an Algorithm. In Proceedings of the 14th International Conference on Neural
    Information Processing Systems. MIT Press, Cambridge, MA, USA, 849-856.
    [26]Alessandro Raganato, Jose Camacho-Collados and Roberto Navigli. 2017.Word
    Sense Disambiguation : A Unified Evaluation Framework and Empirical
    Comparison. In Proceedings of the 15th Conference of the European Chapter of
    the Association for Computational Linguistics, Volume 1. ACL, Valencia, Spain, 99-110.
    [27]Peter Rousseeuw. 1987. Silhouettes:A Graphical Aid to the Interpretation and
    Validation of Cluster Analysis. Computational and Applied Mathematics, Volume
    20. ELSEVIER, Amsterdam, Nederland, 53-56.
    [28]Jianbo Shi and Jitendra Malik. 2000. Normalized Cuts and Image Segmentation.
    IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 22,
    Issue 8. IEEE, Piscataway, NJ, USA, 888-905.
    [29]Eve Sweetser. 1986. Polysemy vs. Abstraction : Mutually Exclusive or
    Complementary? In Proceedings of the 12th Annual Meeting of the Berkeley
    Linguistics Society. BLS, Berkeley, CA, USA, 528-538.
    [30]OpenCC, https://github.com/BYVoid/OpenCC.
    [31]WikiExtractor, https://github.com/attardi/wikiextractor.
    [32]Tian Zhang, Raghu Ramakrishnan and Miron Livny. 1996. BIRCH clustering:An
    Efficient Data Clustering Method for Very Large Databases. In Proceedings of the 1996 Association for Computing Machinery`s Special Interest Group on Management of Data. ACM, New York, NY, USA, 103-114.
    描述: 碩士
    國立政治大學
    資訊科學系
    104753029
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0104753029
    数据类型: thesis
    DOI: 10.6814/NCCU201901187
    显示于类别:[資訊科學系] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    302901.pdf5256KbAdobe PDF2636检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈