政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/126318
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114105/145137 (79%)
Visitors : 52192110      Online Users : 370
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/126318


    Title: A Machine Learning Texture Model for Classifying Lung Cancer Subtypes Using Preliminary Bronchoscopic Findings
    Authors: 羅崇銘
    Lo*, Chung-Ming
    Feng, Po-Hao
    Lin, Yin-Tzu
    Contributors: 圖檔所
    Keywords: bronchoscopy;color texture;computer-aided diagnosis;lung cancer
    Date: 2018-01
    Issue Date: 2019-09-19 09:53:26 (UTC+8)
    Abstract: Purpose: Bronchoscopy is useful in lung cancer detection, but cannot be used to differentiate cancer types. A computer-aided diagnosis (CAD) system was proposed to distinguish malignant cancer types to achieve objective diagnoses. Methods: Bronchoscopic images of 12 adenocarcinoma and 10 squamous cell carcinoma patients were collected. The images were transformed from a red–blue–green (RGB) to a hue–saturation–value (HSV) color space to obtain more meaningful color textures. By combining significant textural features (P < 0.05) in a machine learning classifier, a prediction model of malignant types was established. Results: The performance of the CAD system achieved an accuracy of 86% (19/22), a sensitivity of 90% (9/10), a specificity of 83% (10/12), a positive predictive value of 82% (9/11), and a negative predictive value of 91% (10/11) in distinguishing lung cancer types. The area under the receiver operating characteristic curve was 0.82. Conclusions: On the basis of extracted HSV textures of bronchoscopic images, the CAD system can provide recommendations for clinical diagnoses of lung cancer types.
    Relation: Medical Physics, Vol.45, No.12, pp.5509
    Data Type: article
    Appears in Collections:[Graduate Institute of Library, Information and Archival Studies] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML2577View/Open
    20.pdfpost-print version518KbAdobe PDF2258View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback