English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52550193      Online Users : 829
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/125776


    Title: 應用地理加權迴歸於不動產價格評估之比較研究
    Comparison of Real Estate Valuation Through Geographically Weighted Regression
    Authors: 林家興
    Lin, Chia-Hsing
    Contributors: 詹進發
    Jan, Jihn-Fa
    林家興
    Lin, Chia-Hsing
    Keywords: 特徵價格法
    地理加權迴歸
    地理與時間加權迴歸
    Hedonic Price Method
    Geographically Weighted Regression
    Geographically and Temporally Weighted Regression
    Date: 2019
    Issue Date: 2019-09-05 16:59:37 (UTC+8)
    Abstract: 近年來隨著不動產實價登錄政策之施行,內政部將大量實際成交案件建構成不動產資料庫,如能善用其中之不動產資訊將可增進估價之效率,故建立可迅速且可靠評估不動產價值之估價模型日益重要。然而現行不動產估價中常使用之特徵價格法(Hedonic Price Method)為全域性之分析,缺乏對於空間與時間非均質性之探討,易使模型對真正價值之可解釋性不足,而地理加權迴歸則被認為可有效解決特徵價格法模型所採用之最小平方法(method of least squares)所出現之殘差項存在空間自相關的情況。
    本研究主要目的為改善現行不動產特徵價格模型,使用內政部不動產實價登錄資料庫內之不動產交易資料進行分析,修正基於最小平方法所做出之特徵價格模型中假設整體空間均質性之瑕疵,並試驗在地理加權迴歸、地理與時間加權迴歸中加入傳統特徵價格模型之年份變數對模型成果之影響,並分別測試在固定帶寬與調適帶寬兩種模式下對於不動產價值之空間迴歸結果之差異。
    綜觀研究成果,調適帶寬優於固定帶寬,且使用地理與時間加權迴歸時若於模型中加入年份變數將會對帶寬效果產生影響。此外,使用地理加權迴歸時若加入年份變數則可提高模型擬合效果,並可改善殘差項空間自相關的問題,而使用地理與時間加權迴歸時則以未置入年份變數之模型較佳。因此,地理加權迴歸並導入年份變數之模型,較地理與時間加權迴歸模型更為適用於本國不動產大量估價。
    In recent years, with the implementation of the real estate actual price registration policy, the Ministry of the Interior has constructed a real estate database with large number of actual transaction cases. Real estate valuation can be improved if the database is properly used. It is important to establish a valuation model that can quickly and reliably assess the value of real estate. However, the Hedonic Price Method, which is often used in current real estate valuations, is a global analysis method that does not consider spatial and temporal heterogeneity. Therefore, it is difficult for the model to predict the true value. Conversely, the geographically weighted regression can resolve the problem of spatial autocorrelation in the residual term that is commonly seen in the method of least squares analysis adopted by the Hedonic Price Method.

    The main objective of this study was to improve the Hedonic Price Method. Using the real estate transaction database of the Ministry of the Interior for analysis, this study aimed to correct the defect due to the assumption of overall spatial homogeneity in the model based on the least squares method. Moreover, the study examined the effect of year variable on the model of geographically weighted regression (GWR) and geographically and temporally weighted regression (GTWR), and investigated the difference of the spatial regression results of real estate value under fixed bandwidth and adaptive bandwidth modes, respectively.

    The research results indicate that adaptive bandwidth mode is better than fixed bandwidth mode, and adding year variable to the model of GTWR will have an impact on the bandwidth effect. Furthermore, adding year variable to the GWR model can improve the fitting result, and resolve the problem of spatial autocorrelation in the residual term, while the GTWR model achieves better results without the year variable. Therefore, GWR model added with year variable is more suitable for large-scale valuation of domestic real estate than the GTWR model.
    Reference: 一、 中文參考文獻
    王千岳,2017,「勞動生產力與聚集經濟-來自空間相關誤差組成縱橫模型之證據」,『都市與計劃』,44(4):323-338。
    朱健銘,2000,「土地利用空間型態之研究」,國立臺灣大學地理環境資源研究所碩士論文:臺北市。
    李瑞陽、陳勝義,2010,「台中市搶奪犯罪熱點與犯罪區位之空間分析」,『地理研究』,53:23-48。
    杜宇璇、宋豐荃、曾禹瑄、葛仲寧、陳奉瑤,2013,「台灣特徵價格模型之回顧分析」,『土地問題研究季刊』,12(2):44-57。
    林元興,2017,「大量估價法應遵循的程序」,『土地問題研究季刊』,16(2) : 75-81。
    林宜甲、黃柏霖,2017,「利用空間性局部指標 (LISA) 分析高雄市 C-Bike 站點與空間相關性初探」,『經營管理學刊』,12(13)。
    林尚德,2003,「以反應空間不穩定性為基礎之土地估價模型建立」,國立成功大學都市計劃學系碩士論文:臺南市。
    林英彥,2005,「地價調查估計規則評論」,『土地問題研究季刊』,4(2):35-35。
    林英彥,2017,「對現行大量估價制度之探討」,『土地問題研究季刊』,16(2):82-85。
    林真真、郝飛洋、黃禹馨,2017,「地震之空間聚集性研究-以921地震為例」,『智慧科技與應用統計學報』,15(2):1-12。
    林祖嘉、林素菁,1993,「台灣地區環境品質與公共設施對房價與房租影響之分析」,『住宅學報』,1:21-45。
    林祖嘉、林素菁,1996,「住宅需求、住宅價格與貸款成數」。『台灣經濟學會年會論文集』。
    林祖嘉、馬毓駿,2007,「特徵方程式大量估價法在台灣不動產市場之應用」,『住宅學報』,16(2):1-22。
    邱辰,2015,「從空間角度分析公共自行車系統對站點周邊土地活動影響」,國立臺灣大學土木工程學研究所碩士論文:臺北市。
    柯光彥,2014,「不動產成交實價登錄制度實施成效之研究—以資訊揭露為核心議題」,國立中山大學公共事務管理研究所碩士論文:高雄市。
    洪得洋、林祖嘉,1999,「臺北市捷運系統與道路寬度對房屋價格影響之研究」,『住宅學報』,8:47-67。
    胡正恆、王穎,2018,「梅花鹿再引入後的空間現象:墾丁礁林與次生林的覓食棲地選擇」,『華岡農科學報』,41:12-32。
    張哲文,2017,「實價登錄資料庫結合類神經網路推估房地產市價」,國立中興大學土木工程學系所碩士論文:臺中市。
    張梅英、施昱年,2004,「台灣大量估價問題分析及其改進方法之研究」,『土地問題研究季刊』,3(3):89-105。
    張齡方、古建廷、林俊男,2006,「以地理加權迴歸分析建立灌溉率與各影響因子之關係」,『農業工程學報』,52(2):73-82。
    梁仁旭,2007,「不動產開發選擇權時間價值比之實證分析」,『都市與計劃』,34(1):1-12。
    梁仁旭、廖彬傑、陳奉瑤、葉惠中,2015,「應用克利金法輔助地價區段劃設之研究」,『臺灣土地研究』,18(2):1-20。
    郭議中,2014,「不動產實價登錄制度實施週年之檢討與建議」,國立高雄大學創意設計與建築學系碩士論文:高雄市。
    陳其蔚,2010,「股價、匯率和房價動態關係之研究」,國立臺灣大學國際企業學研究所碩士論文:臺北市。
    陳奉瑤、梁仁旭,2013,『不動產估價』三版,臺北市:財團法人中國地政研究所。
    陳奉瑤、梁仁旭、詹進發、葉惠中,2018,「持續推動基準地地價制度之淺見」,『土地問題研究季刊』,17(3):128-135。
    陳姿伶、張學聖,2018,「地震風險地區土地使用規劃與土地利用關聯性分析-以車籠埔斷層為例」,『都市與計劃』,45(2):161-185。
    陳章瑞,2013,「以地理加權迴歸模型之空間分析探討都是公園之寧適效益」,『造園景觀學報』,19(1):17-46。
    陳慈仁,2001,「臺北市資訊軟體業與網際網路服務業區位分佈之硏究」,國立臺灣大學建築與城鄉研究所碩士論文:臺北市。
    楊孝博,2011,「鐵路車站旅客運輸需求之實證性研究-地理加權迴歸之應用」,國立臺灣大學地理環境資源學研究所碩士論文:臺北市。
    溫在弘,2015,『空間分析:方法與應用』,臺北市:雙葉書廊。
    葉怡成、丁導民、詹巧薇,2016,「以逐步分解迴歸分析法建構房地產估價模型」,『營建管理季刊』,105:54-70。
    葉惠中、盧光輝,2006,「地理統計應用於公告土地現值之研究」,『華岡農科學報』,18:15-27。
    鄒克萬、張秀玲、張曜麟,2002,「整合空間統計技術之土地大量估價方法之研究」,『都市與計劃』,29(3):395-420。
    鄒克萬、張曜麟,2004,「都市土地使用變遷空間動態模型之研究」,『JOURNAL OF GEOGRAPHICAL SCIENCE』,35:35-51。
    廖仲仁,1994,「機場噪音對住宅價格之影響-以臺北松山機場附近住宅為例」,國立臺灣大學建築與城鄉研究所碩士論文:臺北市。
    劉君雅、鄧志松、唐代彪,2009。,「臺灣低生育率之空間分析」,『人口學刊』,39:119-155。
    蔡宛容,2013,「運用地理加權迴歸方法探討都市土地混合使用空間分佈之影響因素」,國立成功大學都市計劃學系碩士論文:臺南市。
    賴進貴、葉高華、王韋力,2004,「土地利用變遷與空間相依性之探討以臺北盆地聚落變遷為例」,『臺灣地理資訊學刊』,1:29-40。
    賴碧瑩,2007,「應用類神經網路於電腦輔助大量估價之研究」,『住宅學報』,16(2):43-65。
    龔永香、江穎慧,、張金鶚,2007,「客觀標準化不動產估價之可行性分析─ 市場比較法應用於大量估價」,『住宅學報』,16(2):23-42。
    二、 外文參考文獻
    Anselin, L., 1995, “Local indicators of spatial association—LISA”, Geographical analysis, 27(2): 93-115.
    Anselin, L., 2013, “Spatial econometrics: methods and models (Vol. 4), Springer: Science & Business Media.
    Anselin, L., Bera, A. K., Florax, R., & Yoon, M. J., 1996, “Simple diagnostic tests for spatial dependence”, Regional science and urban economics, 26(1) : 77-104.
    Anselin, L., & Griffith, D. A., 1988, “DO SPATIAL EFFECFS REALLY MATTER IN REGRESSION ANALYSIS?”, Papers in Regional Science, 65(1):11-34. doi:10.1111/j.1435-5597.1988.tb01155.x
    Basu, S., & Thibodeau, T. G., 1998, “Analysis of Spatial Autocorrelation in House Prices”, The Journal of Real Estate Finance and Economics, 17(1): 61-85. doi:10.1023/A:1007703229507
    Brunsdon, C., Fotheringham, A., & Charlton, M., 2002, “Geographically weighted summary statistics—a framework for localised exploratory data analysis”, Computers, Environment and Urban Systems, 26(6): 501-524.
    Brunsdon, C., Fotheringham, A. S., & Charlton, M., 2002, “Some Notes on Parametric Significance Tests for Geographically Weighted Regression” Journal of Regional Science”, 39(3): 497-524. doi:10.1111/0022-4146.00146
    Can, A., 1992, “Specification and estimation of hedonic housing price models”, Regional science and urban economics, 22(3): 453-474.
    Cavanaugh, J. E., 1997, “Unifying the derivations for the Akaike and corrected Akaike information criteria”, Statistics & Probability Letters, 33(2): 201-208.
    Claeskens, G., & Hjort, N. L., 2008, Model selection and model averaging: Cambridge Books.
    Cliff, A., & Ord, J., 1981, Spatial Processes: Models and Applications (Pion Limited): London.
    Colwell, P. F., & Dilmore, G., 1999, “Who Was First? An Examination of an Early Hedonic Study”, Land Economics, 75(4): 620-626. doi:10.2307/3147070
    Crosby, H., Damoulas, T., Caton, A., Davis, P., Porto de Albuquerque, J., & Jarvis, S. A., 2018, “Road distance and travel time for an improved house price Kriging predictor”, Geo-spatial Information Science, 21(3): 185-194.
    de Koning, K., Filatova, T., & Bin, O., 2018, “Improved Methods for Predicting Property Prices in Hazard Prone Dynamic Markets”, Environmental and resource economics, 69(2): 247-263.
    Demetriou, D., 2016, “The assessment of land valuation in land consolidation schemes: The need for a new land valuation framework”, Land Use Policy, 54: 487-498.
    Demetriou, D., 2018, “Automating the land valuation process carried out in land consolidation schemes”, Land Use Policy, 75: 21-32.
    Dirick, L., Claeskens, G., & Baesens, B., 2015, “An Akaike information criterion for multiple event mixture cure models”, European Journal of Operational Research, 241(2): 449-457.
    Dombrow, J., Knight, J. R., & Sirmans, C., 1997, “Aggregation bias in repeat-sales indices”, The Journal of Real Estate Finance and Economics, 14(1-2): 75-88.
    Dubin, R. A, 1992, “Spatial autocorrelation and neighborhood quality”, Regional science and urban economics, 22(3): 433-452.
    Dziauddin, M. F., 2019, “Estimating land value uplift around light rail transit stations in Greater Kuala Lumpur: An empirical study based on geographically weighted regression (GWR)”, Research in Transportation Economics. doi:https://doi.org/10.1016/j.retrec.2019.01.003
    Fischer, M. M., 2010, Handbook of Applied Spatial Analysis: Springer-Verlag Berlin Heidelberg.
    Follain, J. R., & Malpezzi, S., 1980, Dissecting housing value and rent: Estimates of hedonic indexes for thirty-nine large SMSAs (Vol. 249), Urban Institute Press.
    Fotheringham, A. S., Brunsdon, C., & Charlton, M., 2001, “Scale issues and geographically weighted regression” Modelling scale in geographical information science, 1: 123.
    Fotheringham, A. S., Charlton, M. E., & Brunsdon, C., 1998, “Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis” Environment and planning A, 30(11): 1905-1927.
    Fotheringham, A. S., Crespo, R., & Yao, J., 2015, “Geographical and Temporal Weighted Regression (GTWR)” Geographical analysis, 47(4): 431-452. doi:10.1111/gean.12071
    Fotheringham, S., & Rogerson, P., 2014, Spatial analysis and GIS, CRC Press.
    Geary, R. C., 1954, “The contiguity ratio and statistical mapping” The incorporated statistician, 5(3): 115-146.
    Giraud, C., 2014, Introduction to high-dimensional statistics: Chapman and Hall/CRC.
    Goodchild, M. F., 1986, Spatial autocorrelation: Geo Books.
    Griffith, D. A., & Li, B., 2017, “A geocomputation and geovisualization comparison of Moran and Geary eigenvector spatial filtering”, Paper presented at the Geoinformatics, 2017 25th International Conference on.
    Helbich, M., Brunauer, W., Vaz, E., & Nijkamp, P., 2014, “Spatial heterogeneity in hedonic house price models: the case of Austria”, Urban Studies, 51(2): 390-411.
    Huang, B., Wu, B., & Barry, M., 2010, “Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices”, International Journal of Geographical Information Science, 24(3): 383-401. doi:10.1080/13658810802672469
    Jahanshiri, E., Buyong, T., & Shariff, A. R. M., 2011, “A review of property mass valuation models”, Pertanika Journal of Science & Technology, 19(1): 23-30.
    Kissling, W. D., & Carl, G., 2008, “Spatial autocorrelation and the selection of simultaneous autoregressive models”, Global Ecology and Biogeography, 17(1): 59-71. doi:10.1111/j.1466-8238.2007.00334.x
    Luo, J., & Wei, Y. D., 2004, “A Geostatistical Modeling of Urban Land Values in Milwaukee, Wisconsin”, Geographic Information Sciences, 10(1): 49-57. doi:10.1080/10824000409480654
    Miller, H. J., 2004, “Tobler`s First Law and Spatial Analysis”, Annals of the Association of American Geographers, 94(2): 284-289. doi:10.1111/j.1467-8306.2004.09402005.x
    Moran, P. A., 1948, “The interpretation of statistical maps” Journal of the Royal Statistical Society. Series B (Methodological), 10(2): 243-251.
    Morris, E. S., Thakar, V., & Griffith, D. A., 2017, Respondent-Driven Sampling and Spatial Autocorrelation Advances in Geocomputation (pp. 241-251), Springer.
    Norusis, M. J., 1997, SPSS 6.1 guide to data analysis: Prentice Hall PTR.
    Oshan, T. M., & Fotheringham, A. S., 2018, “A Comparison of Spatially Varying Regression Coefficient Estimates Using Geographically Weighted and Spatial‐Filter‐Based Techniques” Geographical analysis, 50(1): 53-75.
    Osland, L., 2010, “An application of spatial econometrics in relation to hedonic house price modeling”, Journal of Real Estate Research, 32(3): 289-320.
    Platt, R. V., 2004, “Global and local analysis of fragmentation in a mountain region of Colorado”, Agriculture, Ecosystems & Environment, 101(2): 207-218. doi:https://doi.org/10.1016/j.agee.2003.09.005
    Schulz, R., Wersing, M., & Werwatz, A., 2013, “Automated Valuation Modeling: A Specification Exercise”, SFB 649 Discussion Paper 2013-046, Berlin: Humboldt University.
    Smith, T. R., 1971, “Multiple regression and the appraisal of single family residential properties”, The Appraisal Journal, 39(2): 277-284.
    Söderberg, B., 2002, A note on the hedonic model specification for income properties Real Estate Valuation Theory: Springer.
    Stephanie, V., Yoko, M., & Anne, S., 2005, “A hedonic price comparison of manufactured and site-built homes in the non-MSA US”, Journal of Real Estate Research, 27(1): 83-104.
    Tobler, W., 2004, “On the First Law of Geography: A Reply”, Annals of the Association of American Geographers, 94(2): 304-310. doi:10.1111/j.1467-8306.2004.09402009.x
    Tu, Y., Sun, H., & Yu, S.-M., 2007, “Spatial autocorrelations and urban housing market segmentation”, The Journal of Real Estate Finance and Economics, 34(3): 385-406.
    Wang, P., 2006, Exploring spatial effects on housing price: the case study of the city of Calgary, Master dissertation, University of Calgary, Canada.
    Wong, W., & Lee, J., 2005, Statistical analysis of geographic information with ArcView GIS and ArcGIS: Wiley.
    Wrenn, D. H., & Sam, A. G., 2014, “Geographically and temporally weighted likelihood regression: Exploring the spatiotemporal determinants of land use change”, Regional science and urban economics, 44: 60-74.
    Zhang, L., Ma, Z., & Guo, L., 2009, “An evaluation of spatial autocorrelation and heterogeneity in the residuals of six regression models”, Forest Science, 55(6): 533-548.
    Description: 碩士
    國立政治大學
    地政學系
    106257008
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0106257008
    Data Type: thesis
    DOI: 10.6814/NCCU201900808
    Appears in Collections:[地政學系] 學位論文

    Files in This Item:

    File SizeFormat
    700801.pdf3630KbAdobe PDF278View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback