English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52397200      Online Users : 429
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/125647


    Title: 關於量子蒙地卡羅退火法
    On quantum Monte Carlo annealing
    Authors: 何政緯
    Ho, Zheng-Wei
    Contributors: 林瑜琤
    Lin, Yu-Cheng
    何政緯
    Ho, Zheng-Wei
    Keywords: 模擬退火
    隨機級數展開量子蒙地卡羅演算法
    零溫投射蒙地卡羅演算法
    非均質量子易辛鏈
    三角反鐵磁
    Kosterlitz-Thouless 相變
    simulated annealing
    stochastic series expansion method
    zero-temperature projector method
    random quantum Ising chain
    triangular Ising antiferromagnet
    Kosterlitz-Thouless transition
    Date: 2019
    Issue Date: 2019-09-05 16:15:50 (UTC+8)
    Abstract: 本論文檢驗以蒙地卡羅模擬退火來探討平衡態相變點定標分析之可能性。以量子易辛模型為例,我們分別探討動力學指數為 z = 1 的量子臨界點,具 z = ∞ 的無序量子臨界點,及 Kosterlitz-Thouless (KT) 相變。應用有限溫度隨機級數展開法及基態投射演算法,我們考慮的退火路徑涵蓋降溫、降橫場(量子擾動項)及同時降溫及降場三種情形。我們的計算結果顯示對於 z = 1 量子臨界點,上述後兩類量子退火過程在緩慢改變參數下均能正確反應臨界點位置及臨界指數。通過 KT 相變的退火過程亦可找出吻合理論的定標行為。唯 z = ∞ 的量子臨界點為退火過程的瓶頸,似乎任意緩慢的退火速率均很難突破這個瓶頸來達到無序系統近似靜態的極限。
    This thesis examines the use of quantum Monte Carlo simulated annealing in the study of finite-size scaling for equilibrium phase transitions. For quantum Ising models, we study quantum critical points with the dynamic exponent z = 1, a disordered quantum critical point with z = ∞, and the Kosterlitz-Thouless (KT) transition approached through various annealing protocols in quantum Monte Carlo simulations using the stochastic series expansion method and a zero-temperature projector method. We demonstrate that annealing by decreasing a transverse field at zero temperature, or by decreasing the temperature and the transverse field simultaneously can correctly capture the critical scaling behaviors at z = 1 quantum critical points and the KT transition, if the rate of change is sufficiently slow. However, the z = ∞ quantum critical point is an annealing bottleneck and our approaches fail to reach the quasi-static limit of the random quantum Ising chain.
    Reference: [1] S. Sachdev, Quantum Phase Transitions, Cambridge University Press., 2000.
    [2] Y. Jiang and T. Emig, Phys. Rev. B 73,104452 (2006).
    [3] G. H. Wannier, Phys. Rev. 79, 357 (1950).
    [4] S. V. Isakov and R. Moessner, Phys. Rev. B 68, 104409 (2003).
    [5] D. Blankschtein, M. Ma, A. N. Berker, G. S. Grest, and C. M. Soukoulis, Phys. Rev. B 29, 5250 (1984).
    [6] J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson, Phys. Rev. B 16, 1217 (1977).
    [7] D. R. Nelson and J. M. Kosterlitz, Phys. Rev. Lett. 39, 1201 (1977).
    [8] M. E. Fisher and M. N. Barber, Phys. Rev. Lett. 28, 1516 (1972).
    [9] V. Privman, Finite-size scaling theoy, volume 1, Singapore: World Scientific, 1990.
    [10] J. Cardy, Scaling and Renormalization in Statistical Physics, volume 5, Cambridge University Press, 1996.
    [11] K. Binder, Phys. Rev. Lett. 47, 693 (1981).
    [12] K. Binder, Zeitschrift für Physik B Condensed Matter (1981).
    [13] M. S. S. Challa and D. P. Landau, Phys. Rev. B 33, 437 (1986).
    [14] J. M. Kosterlitz, Journal of Physics C: Solid State Physics (1974).
    [15] M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, and E. Vicari, Phys. Rev. B 63, 214503 (2001).
    [16] R. B. Griffiths, Phys. Rev. Lett. 23, 17 (1969).
    [17] S. Guo et al., Phys. Rev. Lett. 100, 017209 (2008).
    [18] S. Ubaid-Kassis, T. Vojta, and A. Schroeder, Phys. Rev. Lett. 104, 066402 (2010).
    [19] Y. Xing et al., Science 350, 542 (2015).
    [20] T. Vojta, J. Phys. A 39, R143 (2006).
    [21] D. S. Fisher, Phys. Rev. Lett. 69, 534 (1992).
    [22] D. S. Fisher, Phys. Rev. B 51, 6411 (1995).
    [23] C. Pich, A. P. Young, H. Rieger, and N. Kawashima, Phys. Rev. Lett. 81, 5916 (1998).
    [24] A. W. Sandvik and J. Kurkijärvi, Phys. Rev. B 43, 5950 (1991).
    [25] D. C. Handscomb, Proc. Cambridge Philos. Soc. 58, 594 (1962).
    [26] A. W. Sandvik, Phys. Rev. B 56, 11678 (1997).
    [27] A. W. Sandvik, Phys. Rev. E 68, 056701 (2003).
    [28] R. G. Melko, Stochastic Series Expansion Quantum Monte Carlo, pages 185–206, Springer, Berlin, Heidelberg, 2013.
    [29] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).
    [30] R. H. Swendsen and J. S. Wang, Phys. Rev. Lett. 58, 86 (1987).
    [31] A. W. Sandvik and K. S. Beach, arXiv:0704.1469v1 (2007).
    [32] A. W. Sandvik, Phys. Rev. Lett. 95, 207203 (2005).
    [33] L. P. Kadanoff et al., Rev. Mod. Phys. 39, 395 (1967).
    [34] M. E. Fisher, Phys. Rev. 180, 594 (1969).
    [35] H. W. J. Blöte and Y. Deng, Phys. Rev. E 66, 066110 (2002).
    [36] R. Guida and J. Zinn-Justin, Nuclear Physics B ,Volume 489, Issue 3, Pages 626-652 (1997).
    [37] S. Kirkpatrick, M. P. Vecchi, and C. D. Gelatt Jr., science 220, 671 (1983).
    [38] T. W. Kibble, Physics Report 67, 183 (1980).
    [39] W. Zurek, Nature 317, 505 (1985).
    [40] W. H. Zurek, U. Dorner, and P. Zoller, Phys. Rev. Lett. 95, 105701 (2005).
    [41] J. Dziarmaga, Phys. Rev. Lett. 95, 245701 (2005).
    [42] C.-W. Liu, A. Polkovnikov, and A. W. Sandvik, Phys. Rev. B 89, 054307 (2014).
    [43] 張鎮宇, 三角晶格易辛反鐵磁之量子相變, Master’s thesis, 國立政治大學, 2017.
    Description: 碩士
    國立政治大學
    應用物理研究所
    106755006
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G1067550061
    Data Type: thesis
    DOI: 10.6814/NCCU201901066
    Appears in Collections:[應用物理研究所 ] 學位論文

    Files in This Item:

    File SizeFormat
    006101.pdf10537KbAdobe PDF2272View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback