English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52397258      Online Users : 382
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/124870
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/124870


    Title: 關於一個秤重問題的探討
    The study about a weighing problem
    Authors: 王昱翔
    Wang, Yu-Hsiang
    Contributors: 李陽明
    王昱翔
    Wang, Yu-Hsiang
    Keywords: 秤重問題
    決策樹
    數學歸納法
    Weighing problem
    Decision tree
    Mathematical Induction
    Date: 2019
    Issue Date: 2019-08-07 16:35:45 (UTC+8)
    Abstract: 本文欲探討,在已知一枚硬幣重量有誤而其他硬幣重量皆相同的情況之下,利用無砝碼天平秤n次,最多可以從多少枚硬幣中找到重量有誤的那一枚硬幣並且知道是較輕還是較重。第二章分別討論「已知一枚硬幣較重」、「已知一枚硬幣較輕」和「已知一枚硬幣重量有誤但不知道是較輕還是較重」三種情況,利用決策樹和數學歸納法證明之,第三章給予實際操作的過程。
    This article wants to find : under the condition that one coin is wrong in weight and the other coins are the same weight, using a scale without weight, what is the maximum number of coins that we can find from the coin with the wrong weight ,and know that it is heavier or lighter ? In chapter 2, we will discuss the following three cases : there is a heavier coin, there is a lighter coin, and there is a coin of wrong weight but not sure the coin is heavier or lighter, separately. we will use the decision tree and mathematical induction to prove them. In chapter 3, we will show the practical process.
    Reference: 中文文獻
    (1)謝維馨,分類工具(3)─決策樹(Decision Tree),上網日期2018年3月1日,檢自:http://yourgene.pixnet.net/blog/post/118211190-%E5%88%86%E9%A1%9E%E5%B7%A5%E5%85%B7(3)%E2%94%80%E6%B1%BA%E7%AD%96%E6%A8%B9%EF%BC%88decision-tree%EF%BC%89。
    (2)CH.Tseng,決策樹 Decision trees,上網日期2017年2月10日,檢自:https://chtseng.wordpress.com/2017/02/10/%E6%B1%BA%E7%AD%96%E6%A8%B9-decision-trees/。
    (3)林宥廷(2014),有關三源數列的探討,國立政治大學,應用數學系碩士班,臺北市。
    英文文獻
    (1)Alan Tucker(1994),Applied Combinatorics(5th edition),John wiley&Sons Inc.
    (2)C.L.Liu(2000),Introduction to Combinatorial Mathematics(International editions 2000),McGraw-Hill.
    (3)Susanna S.Epp(2003),Discrete Mathematics with Applications,Cengage Learning.
    Description: 碩士
    國立政治大學
    應用數學系
    105751006
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0105751006
    Data Type: thesis
    DOI: 10.6814/NCCU201900333
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat
    100601.pdf1014KbAdobe PDF2433View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback