政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/124868
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 114012/145044 (79%)
造访人次 : 52083807      在线人数 : 164
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/124868


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/124868


    题名: 深度學習於國畫主題辨識之應用
    Identifying Chinese painting genres with deep learning
    作者: 許嘉宏
    Hsu, Chia-Hung
    贡献者: 蔡炎龍
    Tsai, Yen-Lung
    許嘉宏
    Hsu, Chia-Hung
    关键词: 深度學習
    卷積神經網路
    影像辨識
    Deep Learning
    Nerural Network
    CNN
    Image Recognition
    日期: 2019
    上传时间: 2019-08-07 16:35:21 (UTC+8)
    摘要: 本篇文章主要使用卷積神經網路來進行圖像辨識,資料來源用台北故宮 博物院線上資料庫,其中圖像收藏量三萬筆,本篇將範圍縮小至畫軸的部 分,總計有 4 千筆,因為每張圖像有主要主題跟次要主題,無法直接用卷 積神經網路來分類。所以先利用 SLIC 演算法將圖像分割,再來進行標籤及 訓練模型。最後如有新的作品要進行辨識,也進行同樣分割,用模型辨識 後,再統整結果得到此作品有哪些主題性。
    In this paper, we want to recognize one image with multiple genres. We collected data from National Palace Museun. If we just use traditional CNN to recognize it, we only get one genre with one image. Hence, we segment image with SLIC algorithm. It can segment image into fixed size with similar range, then we can use them to train the model. After training, if we get the new image, we can use SILC algorithm with same parameter and put it in the model. Then we can recognize this new image with multiple genres.
    參考文獻: [1]RadhakrishnaAchanta,AppuShaji,KevinSmith,AurelienLucchi,PascalFua,andSabine Süsstrunk. Slic superpixels, 2010.

    [2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate. CoRR, abs/1409.0473, 2014.

    [3] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res., 12:2121–2159, 2011.

    [4] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. CoRR, abs/ 1311.2524, 2013.

    [5] J. B. Heaton, N. G. Polson, and J. H. Witte. Deep learning in finance. CoRR, abs/ 1602.06561, 2016.

    [6] Donald Hebb. The The Organization of Behavior. 1949.

    [7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks. In Peter L. Bartlett, Fernando C. N. Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q. Weinberger, editors, NIPS, pages 1106–1114, 2012.

    [8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 1097– 1105. Curran Associates, Inc., 2012.

    [9] Jan Kukačka, Vladimir Golkov, and Daniel Cremers. Regularization for deep learning: A taxonomy, 2017.

    [10]S.Lawrence,C.L.Giles,AhChungTsoi,andA.D.Back.Facerecognition:aconvolutional neural-network approach. Neural Networks, IEEE Transactions on, 8(1):98–113, January 1997.

    [11] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553): 436–444, may 2015.

    [12] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network, 2013.

    [13] National Palace Museun. 書畫典藏資料檢索系統, 2019.

    [14] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Trans. on Knowl. and Data Eng., 22(10):1345–1359, October 2010.

    [15] Tara N. Sainath, Abdel rahman Mohamed, Brian Kingsbury, and Bhuvana Ramabhadran. Deep convolutional neural networks for lvcsr. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, 2013.

    [16] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In International Conference on Learning Representations, 2015.

    [17] Jonathan J Tompson, Arjun Jain, Yann LeCun, and Christoph Bregler. Joint training of a convolutional network and a graphical model for human pose estimation. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 27, pages 1799–1807. Curran Associates, Inc., 2014.

    [18] H. Y. Xiong, B. Alipanahi, L. J. Lee, H. Bretschneider, D. Merico, R. K. C. Yuen, Y. Hua, S. Gueroussov, H. S. Najafabadi, T. R. Hughes, Q. Morris, Y. Barash, A. R. Krainer, N. Jojic, S. W. Scherer, B. J. Blencowe, and B. J. Frey. The human splicing code reveals new insights into the genetic determinants of disease. Science, 347(6218):1254806– 1254806, dec 2014.
    描述: 碩士
    國立政治大學
    應用數學系
    104751003
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0104751003
    数据类型: thesis
    DOI: 10.6814/NCCU201900448
    显示于类别:[應用數學系] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    100301.pdf13043KbAdobe PDF289检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈