參考文獻: | 李鴻洲,2018。台電月刊666期。臺北:台灣電力股份有限公司。 戴寶通、鄭晃忠,1998。太陽能電池技術手冊。新竹:台灣電子材料與元件協會 饒瑞琦(2011)。太陽光電發電系統效能與可用度之研究,清雲科技大學電機工程系所學位論文 。 Alsharif, M. H., Younes, M. K., & Kim, J. (2019). Time Series ARIMA Model for Prediction of Daily and Monthly Average Global Solar Radiation: The Case Study of Seoul, South Korea. Symmetry, 11(2), 240. Europe, S. (2018). Global Market Outlook for Solar Power 2018–2022. Solar Power Europe: Brussels, Belgium. Ghofrani, M., & Alolayan, M. (2017). Time Series and Renewable Energy Forecasting. In Time Series Analysis and Applications: IntechOpen. Jahanshahi, A., Jahanianfard, D., Mostafaie, A., & Kamali, M. (2019). An Auto Regressive Integrated Moving Average (ARIMA) Model for prediction of energy consumption by household sector in Euro area. Lowder, T., Mendelsohn, M., Speer, B., & Hill, R. (2013). Continuing developments in PV risk management: strategies, solutions, and implications. Retrieved from Mapfumo, S., Groenendaal, H., & Dugger, C. (2017). Risk Modeling for Appraising Named Peril Index Insurance Products: A Guide for Practitioners: The World Bank. Sawin, J. L., Rutovitz, J., Sverrisson, F., Aberg, E., Adib, R., Appavou, F., . . . Wuester, H. (2018). Renewables 2018. Global status report 2018 |