政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/124375
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113873/144892 (79%)
造訪人次 : 51918981      線上人數 : 502
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/124375


    題名: 基於合作學習的神經網路進行圖片轉換
    Image-to-Image Translation with Cooperative Learning Networks
    作者: 翁健豪
    Weng, Chien-Hao
    黃存宇
    郁方
    Yu, Fang
    貢獻者: 2019智慧企業資訊應用發展國際研討會
    關鍵詞: 生成式合作網路;圖像轉換;深度學習;神經網路
    Cooperative learning networks;Image-to-Image Translation;deep learning;neural network
    日期: 2019-06
    上傳時間: 2019-07-17 15:16:02 (UTC+8)
    摘要: 本論文提出了一個新的圖像轉換方法,主要的功能是能實現將某一組被特定標籤後的資料還原近似原始資料的樣子。例如我們將一張真實照片做成一張標籤化的圖片,透過大量資料集的訓練,我們可以讓我們的神經網路學習到標籤化的圖片該如何還原成原來的真實照片,在本文中的實驗部分我們會看到這樣的結果。在之前的論文中已經有人提出對於這個問題的解法,最著名的是pix2pix,此作者使用了conditional-GAN的概念來解決此問題。在我們所使用的方法中,我們提出了一種新的方法,不同於GAN的生成式對抗網路,我們採用生成式合作網路的概念,在本文中我們將這方法命名為Coop_pix2pix。生成式合作網路在之前的作品中,最著名的是CoopNet,我們的作法也是由此出發,將CoopNet中合作網路的概念拿來解圖片轉換的題目,我們可以在後面的章節看到使用這方法產生的圖片所帶來的效果。
    This paper proposes a new Image-to-Image translation method. Our work is to restore the original picture from the picture with specific labels as close as possible. For example, we label a real photo to a labeled image. After training by a large number of data sets, we can let our neural network learn how to convert the labeled image to the original photo. We will show the result in the experiment part. There are several previous works solving this problem. For example, pix2pix is a famous work, which uses the concept of conditional-GAN to solve this problem. In our works, we propose a new method. Different from GAN`s generative adversarial network, we use concept of the cooperative learning network. We name this method Coop_pix2pix. CoopNet is a famous example in previous works of the cooperative learning network. Our work based on the cooperative neural networks concept, using this concept to solve Image-to-Image translation problem. We will demonstrate our work’s performance in our experiments part.
    關聯: 2019智慧企業資訊應用發展國際研討會
    資料類型: conference
    顯示於類別:[2019智慧企業資訊應用發展國際研討會] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    55.pdf117KbAdobe PDF2186檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋