政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/124342
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114014/145046 (79%)
Visitors : 52055735      Online Users : 436
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/124342


    Title: 結合長短期記憶與注意力模型於情感分析論文摘要
    Authors: 蔡豪軒
    黃日鉦
    Contributors: 2019智慧企業資訊應用發展國際研討會
    Keywords: 情感分析、情緒分析、長短期記憶、注意力模型、文字探勘。
    Sentiment analysis, emotion analysis, long-short term memory, attention model, text mining.
    Date: 2019-06
    Issue Date: 2019-07-17 15:07:32 (UTC+8)
    Abstract: 情感分析的目的為提取文本當中的情緒特徵,以供分析人員進行學術或商業的應用。然而,傳統的情感分析並未考慮到在文本的內容以及情緒特徵間存在不同的影響權重。因此,本研究提出一個結合了雙向長短期記憶以及注意力模型於情感分析的研究架構,來結合兩者資料作為神經網路的輸入變數,分別進行雙向長短期記憶模型進行訓練,並在雙向長短期記憶模型後加入注意力模型,使模型可以賦予重點單詞與情緒特徵更高的權重。實證結果發現,結合情緒特徵以及使用注意力模型的模型架構,可以較過去使用的雙向長短期記憶模型得到了更佳的情感分析結果。
    The purpose of the sentiment analysis is to extract emotional features in texts for decision-makers to process the applications of the academy or business. However, the conventional sentiment analysis does not consider the different weights between the content of the text and the emotional features. Therefore, this paper proposes a structure which combines bidirectional long-short term memory and attention model in sentiment analysis. The proposed model combines the two information as input data of neural network and trains the network via the bidirectional long-short term memory model. In addition, this paper add the attention model behind the bidirectional long-short term memory model to increase the weighs on specific emotion features. Finally, the proposed model is compared with other conventional models and show the better performance than the bidirectional long-short term memory model.
    Relation: 2019智慧企業資訊應用發展國際研討會
    Data Type: conference
    Appears in Collections:[2019智慧企業資訊應用發展國際研討會] Conference papers

    Files in This Item:

    File Description SizeFormat
    22.pdf151KbAdobe PDF2284View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback