政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/122462
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114105/145137 (79%)
造訪人次 : 52159544      線上人數 : 416
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/122462


    題名: 落實本地差分隱私的安全式機器學習
    Applying Local Differential Privacy for Secure Machine Learning
    作者: 呂柏漢
    貢獻者: 胡毓忠
    呂柏漢
    關鍵詞: 本地差分隱私
    安全式機器學習
    資料保護
    二元分類
    隱私保護
    Local differential privacy
    Secure machine learning
    Data Protection
    日期: 2019
    上傳時間: 2019-03-07 12:07:44 (UTC+8)
    摘要: 隨著大數據時代的到來,各大企業與政府組織皆大量的蒐集與分析用戶資
    訊,個人隱私也隨之面臨洩漏的風險,如何平衡資料的可用性與隱私保護成為重要的課題。本研究運用本地差分隱私技術建構安全式機器學習,在不洩漏個人敏感資訊的情形下完成資料分析的正確分類與預測。本研究使用 UCI 提供的” Bank Marketing Data Set”資料集,運用基於 AnonML 與 RAPPOR 的本地差分隱私技術擾動敏感資料完成隱私保護,允許使用者視特徵隱私程度的不同客製化隱私預算,在三方平台還原資料完成安全式機器學習,並具體提出量化與質化的運算觀察結果。
    With the arrival of big data era, many big enterprises and governments aggregate and analyze great amounts of user data. Personal privacy faces the risk of leakage nowadays. It becomes an important task to balance data utility and privacy protection.This research proposed to use local differential privacy to implement secure machine
    learning and make correct classification and prediction with the data protection. This research uses the “Bank Marketing Data Set” on UCI, adding noise into sensitive data by local differential privacy based on AnonML and RAPPOR for privacy protection and recover the data to implement machine learning on the third-party platform, and
    concluding the calculation results of quantization and quality by this method.
    參考文獻: [1] B. Hitaj et al., “Deep models under the GAN: information leakage from collaborative deep learning,” Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 603-618, 2017.
    [2] A. Narayanan and V. Shmatikov, “Robust de-anonymization of large sparse datasets,” Security and Privacy, 2008. SP 2008. IEEE Symposium on, pp. 111-125, 2008.
    [3] T. Dalenius, “Towards a methodology for statistical disclosure control,” statistik Tidskrift, vol. 15, no. 429-444, pp. 2-1, 1977.
    [4] C. Dwork, “Differential Privacy,” Proceedings of the 33rd International Colloquium on Automata, Languages and Programming, pp. 1-12, 2006.
    [5] L. Sweeney, “k-anonymity: A model for protecting privacy,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 10, no. 05, pp. 557-570, 2002.
    [6] A. Machanavajjhala et al., “l-Diversity: Privacy Beyond k-Anonymity,” Proceedings of the 22nd International Conference on Data Engineering, pp. 24, 2006.
    [7] C. Dwork and A. Roth, “The algorithmic foundations of differential privacy,” Foundations and Trends® in Theoretical Computer Science, vol. 9, no. 3–4, pp. 211-407, 2014.
    [8] C. Dwork et al., “Calibrating noise to sensitivity in private data analysis,” Theory of Cryptography Conference, pp. 265-284, 2006.
    [9] F. McSherry and K. Talwar, “Mechanism design via differential privacy,” Foundations of Computer Science, 2007. FOCS`07. 48th Annual IEEE Symposium on, pp. 94-103, 2007.
    [10] F. D. McSherry, “Privacy integrated queries: an extensible platform for privacy-preserving data analysis,” Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data, pp. 19-30, 2009.
    [11] C. Dwork et al., “On the complexity of differentially private data release: efficient algorithms and hardness results,” Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp. 381-390, 2009.
    [12] J. C. Duchi et al., “Local privacy and statistical minimax rates,” Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on, pp. 429-438, 2013.
    [13] S. L. Warner, “Randomized response: A survey technique for eliminating evasive answer bias,” Journal of the American Statistical Association, vol. 60, no. 309, pp. 63-69, 1965.
    [14] Ú. Erlingsson et al., “Rappor: Randomized aggregatable privacy-preserving ordinal response,” Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 1054-1067, 2014.
    [15] G. Fanti et al., “Building a RAPPOR with the Unknown: Privacy-Preserving Learning of Associations and Data Dictionaries,” Proceedings on Privacy Enhancing Technologies, vol. 2016, no. 3, pp. 41, 2016.
    [16] R. Tibshirani, “Regression shrinkage and selection via the lasso: a retrospective,” Journal of the Royal Statistical Society: Series B, vol. 73, no. 3, pp. 273-282, 2011.
    [17] T. T. Nguyên et al., “Collecting and analyzing data from smart device users with local differential privacy,” arXiv preprint arXiv:1606.05053, 2016.
    [18] B. Cyphers and K. Veeramachaneni, “AnonML: Locally private machine learning over a network of peers,” Data Science and Advanced Analytics (DSAA), IEEE International Conference on, pp. 549-560, 2017.
    [19] P. Samarati and L. Sweeney, “Generalizing data to provide anonymity when disclosing information,” PODS, vol. 98, pp. 188, 1998.
    [20] L. Sweeney, “Achieving k-anonymity privacy protection using generalization and suppression,” International Journal of Uncertainty, Fuzziness Knowledge-Based Systems, vol. 10, no. 05, pp. 571-588, 2002.
    [21] F. Prasser et al., “Lightning: Utility-Driven Anonymization of High-Dimensional Data,” Transactions on Data Privacy, vol. 9, no. 2, pp. 161-185, 2016.
    [22] R. Bassily and A. Smith, “Local, private, efficient protocols for succinct histograms,” Proceedings of the 47th Annual ACM Symposium on Theory of Computing, pp. 127-135, 2015.
    描述: 碩士
    國立政治大學
    資訊科學系碩士在職專班
    105971008
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0105971008
    資料類型: thesis
    DOI: 10.6814/THE.NCCU.EMCS.005.2019.B02
    顯示於類別:[資訊科學系碩士在職專班] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    100801.pdf3071KbAdobe PDF23檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋