政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/121187
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113873/144892 (79%)
造訪人次 : 51976011      線上人數 : 635
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    引文資訊
    資料載入中.....
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/121187


    題名: Multidimensional dynamics: from simple to complicated
    作者: Liao, Kang-Ling
    Shih, Chih-Wen
    曾睿彬
    Tseng, Jui-Pin
    貢獻者: 應數系
    日期: 2011-04
    上傳時間: 2018-12-04 11:20:03 (UTC+8)
    摘要: The most apparent look of a discrete-time dynamical system is that an orbit is composed of a collection of points in phase space, in contrast to a trajectory curve for a continuous-time system. A basic and prominent theoretical difference between discrete-time and continuous-time dynamical systems is that chaos occurs in one-dimensional discrete-time dynamical systems, but not for one-dimensional deterministic continuous-time dynamical systems; the logistic map and logistic equation are the most well-known example illustrating this difference. On the one hand, fundamental theories for discrete-time systems have also been developed in a parallel manner as for continuous-time dynamical systems, such as stable manifold theorem, center manifold theorem and global attractor theory etc. On the other hand, analytical theory on chaotic dynamics has been developed more thoroughly for discrete-time systems (maps) than for continuous-time systems. Li-Yorke’s period-three-implies-chaos and Sarkovskii’s ordering on periodic orbits for one-dimensional maps are ones of the most celebrated theorems on chaotic dynamics.
    關聯: Discrete Time Systems, InTech, pp.505-526
    資料類型: book/chapter
    DOI 連結: http://dx.doi.org/10.5772/15320
    DOI: 10.5772/15320
    顯示於類別:[俄羅斯研究所] 專書/專書篇章

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML2565檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©  2006-2025  - 回饋