English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51677528      Online Users : 591
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/120971


    Title: Long-lived Indy and calorie restriction interact to extend life span
    Authors: Wang, Pei-Yu;Neretti, Nicola;Whitaker, Rachel;Hosier, Suzanne;Chang, Chengyi;Lu, Daniel;Rogina, Blanka;Helfand, Stephen L.
    王培育
    Wang, Pei-Yu
    Contributors: 神科所
    Keywords: Drosophila;insulin;physical activity;triglyceride
    Date: 2009-06
    Issue Date: 2018-11-21 16:22:42 (UTC+8)
    Abstract: Calorie restriction (CR) improves health and extends life span in a variety of species. Despite many downstream molecules and physiological systems having been identified as being regulated by CR, the mechanism by which CR extends life span remains unclear. The Drosophila gene Indy (for I`m not dead yet), involved in the transport and storage of Krebs cycle intermediates in tissues important in fly metabolism, was proposed to regulate life span via an effect on metabolism that could overlap with CR. In this study, we report that CR down regulates Indy mRNA expression, and that CR and the level of Indy expression interact to affect longevity. Optimal life span extension is seen when Indy expression is decreased between 25 and 75% of normal. Indy long-lived flies show several phenotypes that are shared by long-lived CR flies, including decreased insulin-like signaling, lipid storage, weight gain, and resistance to starvation as well as an increase in spontaneous physical activity. We conclude that Indy and CR interact to affect longevity and that a decrease in Indy may induce a CR-like status that confers life span extension.
    Relation: Proceedings of the National Academy of Sciences of the United States of America, 106(23), 9262-7
    PMID: 19470468
    Data Type: article
    DOI 連結: https://doi.org/10.1073/pnas.0904115106
    DOI: 10.1073/pnas.0904115106
    Appears in Collections:[神經科學研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    zpq9262.pdf865KbAdobe PDF2341View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback