English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52562140      Online Users : 873
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 期刊論文 >  Item 140.119/120130
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/120130


    Title: The corestriction of p-symbols
    Authors: Chu, Huah
    Kang, Ming Chang
    陳永秋
    Tan, Eng-Tjioe
    Contributors: 應數系
    Date: 1988
    Issue Date: 2018-09-25 16:23:03 (UTC+8)
    Abstract: Let $K$ be a field of characteristic $p>0$. For any $a,b\\in K$, $b\
    ot=0$ the $p$-symbol $[a,b)_K$ denotes the similarity class in $\\roman{Br}(K)$ of the central simple $p$-algebra: $\\bigoplus_{0\\leq i,j\\leq p-1}Kx^iy^j$, $x^p-x=a$, $y^p=b$, $yx=(x+1)y$; and for any $a,b\\in K$, $(a,b)_K$ denotes the class of: $\\bigoplus_{0\\leq i,j\\leq p-1}Kx^iy^j$, $x^p=a$, $y^p=b$, $yx=xy+1$. The following reciprocity laws for the corestriction of the above $p$-symbols are proven. Theorem 3: Let $K(a)$ and $K(c)$ be any finite separable field extensions of $K$, $p(X)$ and $f(X)$ the irreducible polynomials of $a$ and $c$ over $K$, respectively. If $p(X)$ and $f(X)$ are distinct polynomials, for any $s,t\\in K$ one has $$\\displaylines{ \\roman{cor}_{K(a)/K}\\left(\\frac{f`(a)}{f(a)},sa+t\\right)_{K(a)}+ \\roman{cor}_{K(c)/K}\\left(\\frac{p`(c)}{p(c)},sc+t\\right)_{K(c)}\\hfill\\cr \\hfill{}=\\roman{cor}_{K(a)/K}[s,f(a))_{K(a)}=\\roman{cor}_{K(c)/K} [s,p(c))_{K(c)}.\\cr}$$

    Theorem 4: With the same notations as in Theorem 3, one has $\\roman{cor} _{K(a)/K}[s^pa+t,f(a))_{K(a)}=\\roman{cor}_{K(c)/K}[s^pc+t,p(c))_{K(c)}$.
    These results extend the reciprocity laws of Rosset and Tate for the corestriction of Milnor functions and of P. Mammone [same journal 14 (1986), no. 3, 517–529; MR0823352] for the corestriction of $p$-symbols. Mammone`s reciprocity law concerned the multiplicative part of the $p$-symbol, i.e., the second argument. The above result also allows elements to appear in the first variable.
    Relation: Communications in Algebra, 16(4), 735-741
    AMS MathSciNet:MR932631
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1080/00927878808823599
    DOI: 10.1080/00927878808823599
    Appears in Collections:[應用數學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML2334View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback