政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/120128
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51879499      Online Users : 573
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/120128


    Title: On the ""fair`` games problem for the weighted generalized Petersburg games
    Authors: 林光賢
    Lin, Kuang Hsien
    陳天進
    Chen, Ten Ging
    Yang, Ling-Huey
    Contributors: 應數系
    Date: 1993-03
    Issue Date: 2018-09-25 16:22:01 (UTC+8)
    Abstract: Let $S_n=\\sum^n_{j=1}a_jY_j$, $n\\geq 1$, where $\\{Y_n,\\ n\\geq 1\\}$ is a sequence of i.i.d. random variables with the generalized Petersburg distribution $P\\{Y_1=q^{-k}\\}=pq^{k-1}$, $k\\geq 1$, where $0<p=1-q<1$ and $a_n,\\ n\\geq 1$, are positive constants with $(\\sum^n_{j=1}a_j)/\\max_{1\\leq j\\leq n}a_j\\to\\infty$. The main result asserts that $S_n/M_n\\overset P\\to\\rightarrow 1$, where $$M_n=\\sup\\Big\\{x\\colon\\ \\sum^n_{j=1}a_jEY_1I(a_jY_1\\leq x)\\geq x\\Big\\},\\quad n\\geq 1,$$

    thereby generalizing a result of A. Adler and the reviewer [Bull. Inst. Math. Acad. Sinica 17 (1989), no. 3, 211–227; MR1042179] obtained for the particular choice $a_n=n^\\alpha$, $n\\geq 1$, where $\\alpha>-1$. This problem has the following interesting interpretation. Suppose a player wins $a_nY_n$ dollars during the $n$th game in a sequence of generalized Petersburg games. If $M_n=\\sum^n_{j=1}m_j$ represents the accumulated entrance fees for playing the first $n$ games, then $S_n/M_n\\overset P\\to\\rightarrow 1$ is the assertation that $\\{m_n,\\ n\\geq 1\\}$ is a &quot;fair solution in the weak sense to the games``.
    Relation: Chinese Journal of Mathematics,21(1),21-31
    AMS MathSciNet:MR1209488
    Data Type: article
    Appears in Collections:[Department of Mathematical Sciences] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML2310View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback