English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52608726      Online Users : 723
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/120067


    Title: Reproducibility of structural brain connectivity and network metrics using probabilistic diffusion tractography
    Authors: 蔡尚岳
    Tsai, Shang-Yueh
    Contributors: 應物所
    Date: 2018
    Issue Date: 2018-09-11 18:24:51 (UTC+8)
    Abstract: The structural connectivity network constructed using probabilistic diffusion tractography can be characterized by the network metrics. In this study, short-term test-retest reproducibility of structural networks and network metrics were evaluated on 30 subjects in terms of within- and between-subject coefficient of variance (CVws, CVbs), and intra class coefficient (ICC) using various connectivity thresholds. The short-term reproducibility under various connectivity thresholds were also investigated when subject groups have same or different sparsity. In summary, connectivity threshold of 0.01 can exclude around 80% of the edges with CVws = 73.2 ± 37.7%, CVbs = 119.3 ± 44.0% and ICC = 0.62 ± 0.19. The rest 20% edges have CVws < 45%, CVbs < 90%, ICC = 0.75 ± 0.12. The presence of 1% difference in the sparsity can cause additional within-subject variations on network metrics. In conclusion, applying connectivity thresholds on structural network to exclude spurious connections for the network analysis should be considered as necessities. Our findings suggest that a connectivity threshold over 0.01 can be applied without significant effect on the short-term when network metrics are evaluated at the same sparsity in subject group. When the sparsity is not the same, the procedure of integration over various connectivity thresholds can provide reliable estimation of network metrics.
    Relation: Scientific Reportsvolume 8, Article number: 11562
    Data Type: article
    DOI 連結: https://doi.org/10.1038/s41598-018-29943-0
    DOI: 10.1038/s41598-018-29943-0
    Appears in Collections:[應用物理研究所 ] 期刊論文

    Files in This Item:

    File Description SizeFormat
    s41598-018-29943-0.pdf4561KbAdobe PDF2431View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback