English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51823793      Online Users : 541
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/119911
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/119911


    Title: 運用跨城市關係推薦個人化旅遊景點
    Personalized Tourist Attractions Recommendation using Cross-City Relationship
    Authors: 曾筱筑
    Zeng, Siao-Jhu
    Contributors: 沈錳坤
    Shan, Man-Kwan
    曾筱筑
    Zeng, Siao-Jhu
    Keywords: 景點推薦
    主題模型
    相關性探勘
    Attractions recommendation
    Topic modeling
    Correlation mining
    Date: 2018
    Issue Date: 2018-09-03 15:52:18 (UTC+8)
    Abstract: 隨著全球化的發展以及社群媒體的流行,自助旅行的風氣蔚為風潮。由於現在網路上有大量的旅遊資訊,當使用者想規劃一個目的地旅遊時,使用者輸入目的地名稱則會顯示出許多筆資料。然而接收過多的旅遊資訊反而會讓使用者更感困惑,不知如何著手規劃旅遊行程,因此也開始有自動推薦旅遊景點的需求。
    與傳統推薦方法相比,旅遊景點推薦需克服沒有實際使用者對旅遊景點的評分,以及使用者拜訪旅遊景點次數少,造成資料稀疏性的問題。在過去旅遊景點推薦的相關研究中,大多只考慮使用者之間潛在的喜好相似度,來改善協同過濾方法中的資料稀疏性問題,較少考慮到旅遊景點潛在的影響力以及不同城市旅遊景點的差異。本研究期望從大量的地理標籤照片中得到使用者旅遊紀錄,透過Latent Dirichlet Allocation (LDA)學習城市中旅遊景點有價值的潛在資訊與使用者對該城市潛在的喜好資訊,再透過Partial Least Square Regression (PLSR)將不同的城市視為不同的領域,找到跨城市之間的關係,為使用者個人化推薦符合該使用者喜好的旅遊景點。
    本研究的目標為,當使用者要拜訪目標城市的旅遊景點時,運用考量旅遊次數的使用者拜訪旅遊景點的情形與跨城市之間的關係,推薦符合使用者喜好的目標城市旅遊景點。經過實驗評估,證實本研究與傳統推薦方法相比,能有效提升個人旅遊景點推薦的效能及準確度。
    With the development of globalization and the popularity of social media, self-guided tour has become a trend. It takes much time for a user to plan a tour, including searching for attractions. Therefore, the demand for automatic attractions recommendation for self-guided tourist is rising.
    Compared with the traditional recommendation mechanism, tourist attractions recommendation needs to overcome no user rating scores for tourist attractions and data sparsity, because most users usually visit only few attractions. In the previous research, most work only considers the similarity between users to improve the data sparsity problem based on collaborative filtering. Less consideration is paid to the correlation of visited attractions between tourist destinations. In this thesis, we collected user travel records from a large number of geo-tagged photos, and utilized Latent Dirichlet Allocation (LDA) to discover the preference distribution of each tourist for each destination. Then, Partial Least Square Regression (PLSR) is employed to find the correlation relationship of preference distributions between tourist destinations. The attractions are personally recommended based on the user’s preferences and the discovered correlation relationships. The experiment shows our proposed method is better than other approaches.
    Reference: [1] S. Amer-Yahia, S. B. Roy, A. Chawlat, G. Das, and C. Yu, Group recommendation: Semantics and efficiency. Proceedings of the VLDB Endowment, 2(1), 2009.
    [2] D. M. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation. Journal of Machine Learning Research, 3:993-1022, 2003.
    [3] D. M. Blei, Probabilistic topic models, Communications of the ACM, 55(4), 77-84, 2012.
    [4] I. Cantador, I. Fernandez-Tobas, S. Berkovsky, and P. Cremonesi, Cross-domain recommender systems. Recommender Systems Handbook (2015), 919–959, 2015.
    [5] A. Cheng, Y. Chen, Y. Huang, W. Hsu, and H. Liao, Personalized travel recommendation by mining people attributes from communitycontributed photos, in Proceedings of 19th ACM international conference on Multimedia, 83–92, 2011.
    [6] D. Comaniciu, P. Meer, Mean Shift: A Robust Approach Toward Feature Space Analysis, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp. 603-619, May 2002.
    [7] A. M. Elkahky, Y. Song, and X. He, A multi-view deep learning approach for cross domain user modeling in recommendation systems. Proceedings of the 24th International Conference on World Wide Web, 2015.
    [8] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise. Knowledge Discovery in Databases, 1996.
    [9] A. Farseev, I. Samborskii, A. Filchenkov, and T.-S. Chua, Cross-Domain Recommendation via Clustering on Multi-Layer Graphs. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’17), 195–204, 2017.
    [10] Y. Fujiwara, M. Nakatsuji, M. Onizuka, and M. Kitsuregawa, Fast and exact top-k search for random walk with restart. Proceedings of the VLDB Endowment, 5(5), 2012.
    [11] L. Guo, J. Shao, K. L. Tan, and Y. Yang, Wheretogo: Personalized travel recommendation for individuals and groups. Proceedings of the 15th IEEE International Conference on Mobile Data Management (MDM), 2014.
    [12] S. Jiang, X. Qian, J. Shen, Y. Fu, and T. Mei, Author topic model-based collaborative filtering for personalized POI recommendations. IEEE Transactions on Multimedia, 17(6), 2015.
    [13] S. Kisilevich, F. Mansmann, and D. Keim, P-DBSCAN: a density based clustering algorithm for exploration and analysis of attractive areas using collections of geo-tagged photos. Proceedings of the 1st international conference and exhibition on computing for geospatial research & application, 2010.
    [14] H. Kori, S. Hattori, T. Tezuka, and K. Tanaka, Automatic generation of multimedia tour guide from local blogs. Proceedings of the 13th international conference on Multimedia Modeling, 2007.
    [15] C. Li, C. Hsu, and M. Shan. A Cross-Domain Recommendation Mechanism for Cold-Start Users Based on Partial Least Squares Regression. ACM Transactions on Intelligent Systems and Technology (TIST), 2018. (to appear)
    [16] J. Lian, F. Zhang, X. Xie, and G. Sun, CCCFNet: a content-boosted collaborative filtering neural network for cross domain recommender systems. Proceedings of the 26th International Conference on World Wide Web Companion, 2017.
    [17] G. Linden, B. Smith, and J. York, Amazon. com recommendations: Item-to-item collaborative filtering. IEEE Internet computing, 7(1), 2003.
    [18] J. Liu, Z. Huang, L. Chen, H. T. Shen, and Z. Yan, Discovering areas of interest with geo-tagged images and check-ins. Proceedings of the 20th ACM international conference on Multimedia, 2012.
    [19] Q. Liu, Y. Ge, Z. Li, E. Chen, and H. Xiong, Personalized travel package recommendation. Proceedings of the 11th IEEE International Conference on Data Mining (ICDM), 2011.
    [20] R. Manne, Analysis of two partial-least-squares algorithms for multivariate calibration. Chemometrics and Intelligent Laboratory Systems, 2(1), 187-197, 1987.
    [21] S.Qian, T. Zhang, R. Hong, and C. Xu, Cross-Domain Collaborative Learning in Social Multimedia. In Proceedings of the 23rd ACM International Conference on Multimedia (MM ’15), 99–108, 2015.
    [22] M. Röder , A. Both , A. Hinneburg, Exploring the Space of Topic Coherence Measures. Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, 2015.
    [23] R. Rosipal and N. Krämer, Overview and recent advances in partial least squares. Subspace, Latent Structure and Feature Selection, Springer, 34-51, 2006
    [24] B. Thomee, D. A. Shamma,G. Friedland, B. Elizalde, K. Ni, D. Poland, D. Borth, and Li-Jia Li, Yfcc100m: The new data in multimedia research. Communications of the ACM, volume59, pages 64–73, 2016.
    [25] H. Tong, C. Faloutsos, and J. Y. Pan, Fast random walk with restart and its applications. Proceedings of the 6th IEEE International Conference on Data Mining (ICDM), 2006.
    [26] L. Y. Wei, Y. Zheng, and W. C. Peng, Constructing popular routes from uncertain trajectories. Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, 2012.
    [27] H. Wold, H. M. Blalock, A. Aganbegian, F. M. Borodkin, R. Boudon, V. Capecchi, Path models with latent variables: The NIPALS approach. in Quantitative Sociology: Internnational Perspectives on Mathematical and Statistical Model Building, pp. 307-357, 1975.
    [28] Z. Xu, L. Chen, Y. Dai, and G. Chen, A dynamic topic model and matrix factorization based travel recommendation method exploiting ubiquitous data. IEEE Transactions on Multimedia, 19(8), 2017.
    [29] 陳逸群, 旅遊行程自動規劃系統的設計與實作. 國立政治大學資訊科學系, 碩士論文, 2016.
    Description: 碩士
    國立政治大學
    資訊科學系
    105753010
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0105753010
    Data Type: thesis
    DOI: 10.6814/THE.NCCU.CS.011.2018.B02
    Appears in Collections:[資訊科學系] 學位論文

    Files in This Item:

    File SizeFormat
    301001.pdf2187KbAdobe PDF29View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback